August  2014, 8(3): 645-683. doi: 10.3934/ipi.2014.8.645

Resolution enhancement from scattering in passive sensor imaging with cross correlations

1. 

Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions, Université Paris Diderot, 75205 Paris Cedex 13, France

2. 

Mathematics Department, Stanford University, Stanford, CA 94305, United States

Received  February 2012 Revised  June 2013 Published  August 2014

It was shown in [Garnier et al., SIAM J. Imaging Sciences 2 (2009), 396] that it is possible to image reflectors by backpropagating cross correlations of signals generated by ambient noise sources and recorded at passive sensor arrays. The resolution of the image depends on the directional diversity of the noise signals relative to the locations of the sensor array and the reflector. When directional diversity is limited it is possible to enhance it by exploiting the scattering properties of the medium since scatterers will act as secondary noise sources. However, scattering increases the fluctuation level of the cross correlations and therefore tends to destabilize the image by reducing its signal-to-noise ratio. In this paper we study the trade-off in passive, correlation-based imaging between resolution enhancement and signal-to-noise ratio reduction that is due to scattering.
Citation: Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems & Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645
References:
[1]

C. Bardos, J. Garnier and G. Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/1/015011. Google Scholar

[2]

J. Berryman, Stable iterative reconstruction algorithm for nonlinear travel time tomography,, Inverse Problems, 6 (1990), 21. doi: 10.1088/0266-5611/6/1/005. Google Scholar

[3]

B. L. Biondi, 3D Seismic Imaging, no. 14 in Investigations in Geophysics,, Society of Exploration Geophysics, (2006). Google Scholar

[4]

N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals,, Dover, (1986). Google Scholar

[5]

M. Born and E. Wolf, Principles of Optics,, Cambridge University Press, (1999). doi: 10.1017/CBO9781139644181. Google Scholar

[6]

F. Brenguier, N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant and A. Nercessian, Towards forecasting volcanic eruptions using seismic noise,, Nature Geoscience, 1 (2008), 126. doi: 10.1038/ngeo104. Google Scholar

[7]

T. Callaghan, N. Czink, F. Mani, A. Paulraj and G. Papanicolaou, Correlation-based radio localization in an indoor environment,, EURASIP Journal on Wireless Communications and Networking, 2011 (2011). doi: 10.1186/1687-1499-2011-135. Google Scholar

[8]

J. F. Claerbout, Imaging the Earth's Interior,, Blackwell Scientific Publications, (1985). Google Scholar

[9]

Y. Colin de Verdière, Semiclassical analysis and passive imaging,, Nonlinearity, 22 (2009). doi: 10.1088/0951-7715/22/6/R01. Google Scholar

[10]

L. Erdös and H.-T. Yau, Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation,, Comm. Pure Appl. Math., 53 (2000), 667. doi: 10.1002/(SICI)1097-0312(200006)53:6<667::AID-CPA1>3.0.CO;2-5. Google Scholar

[11]

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media,, Springer, (2007). doi: 10.1007/978-0-387-49808-9_4. Google Scholar

[12]

U. Frisch, Wave Propagation in Random Media,, in Probabilistic Methods in Applied Mathematics, 1 (1968), 75. Google Scholar

[13]

J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium,, SIAM J. Imaging Sciences, 2 (2009), 396. doi: 10.1137/080723454. Google Scholar

[14]

J. Garnier and G. Papanicolaou, Resolution analysis for imaging with noise,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/7/074001. Google Scholar

[15]

J. Garnier and K. Sølna, Cross correlation and deconvolution of noise signals in randomly layered media,, SIAM J. Imaging Sciences, 3 (2010), 809. doi: 10.1137/090757538. Google Scholar

[16]

O. A. Godin, Accuracy of the deterministic travel time retrieval from cross-correlations of non-diffuse ambient noise,, J. Acoust. Soc. Am., 126 (2009). doi: 10.1121/1.3258064. Google Scholar

[17]

P. Gouédard, L. Stehly, F. Brenguier, M. Campillo, Y. Colin de Verdière, E. Larose, L. Margerin, P. Roux, F. J. Sanchez-Sesma, N. M. Shapiro and R. L. Weaver, Cross-correlation of random fields: Mathematical approach and applications,, Geophysical Prospecting, 56 (2008), 375. Google Scholar

[18]

P. A. Martin, Acoustic scattering by inhomogeneous obstacles,, SIAM J. Appl. Math., 64 (2003), 297. doi: 10.1137/S0036139902414379. Google Scholar

[19]

P. M. Morse and K. U. Ingard, Theoretical Acoustics,, McGraw-Hill, (1968). Google Scholar

[20]

G. Papanicolaou, L. Ryzhik and K. Sølna, Self-averaging from lateral diversity in the Ito-Schroedinger equation,, SIAM Journal on Multiscale Modeling and Simulation, 6 (2007), 468. doi: 10.1137/060668882. Google Scholar

[21]

P. Roux, K. G. Sabra, W. A. Kuperman and A. Roux, Ambient noise cross correlation in free space: Theoretical approach,, J. Acoust. Soc. Am., 117 (2005), 79. doi: 10.1121/1.1830673. Google Scholar

[22]

L. V. Ryzhik, G. C. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media,, Wave Motion, 24 (1996), 327. doi: 10.1016/S0165-2125(96)00021-2. Google Scholar

[23]

N. M. Shapiro, M. Campillo, L. Stehly and M. H. Ritzwoller, High-resolution surface wave tomography from ambient noise,, Science, 307 (2005), 1615. doi: 10.1126/science.1108339. Google Scholar

[24]

P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena,, Academic Press, (1995). Google Scholar

[25]

R. Snieder, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.046610. Google Scholar

[26]

L. Stehly, M. Campillo, B. Froment and R. Weaver, Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise,, J. Geophys. Res., 113 (2008). doi: 10.1029/2008JB005693. Google Scholar

[27]

L. Stehly, M. Campillo and N. M. Shapiro, A study of the seismic noise from its long-range correlation properties,, Geophys. Res. Lett., 111 (2006). doi: 10.1029/2005JB004237. Google Scholar

[28]

M. C. W. van Rossum and Th. M. Nieuwenhuizen, Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion,, Reviews of Modern Physics, 71 (1999), 313. Google Scholar

[29]

K. Wapenaar and J. Fokkema, Green's function representations for seismic interferometry,, Geophysics, 71 (2006). Google Scholar

[30]

R. Weaver and O. I. Lobkis, Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies,, Phys. Rev. Lett., 87 (2001). doi: 10.1103/PhysRevLett.87.134301. Google Scholar

[31]

H. Yao, R. D. van der Hilst and M. V. de Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps,, Geophysical Journal International, 166 (2006), 732. doi: 10.1111/j.1365-246X.2006.03028.x. Google Scholar

show all references

References:
[1]

C. Bardos, J. Garnier and G. Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/1/015011. Google Scholar

[2]

J. Berryman, Stable iterative reconstruction algorithm for nonlinear travel time tomography,, Inverse Problems, 6 (1990), 21. doi: 10.1088/0266-5611/6/1/005. Google Scholar

[3]

B. L. Biondi, 3D Seismic Imaging, no. 14 in Investigations in Geophysics,, Society of Exploration Geophysics, (2006). Google Scholar

[4]

N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals,, Dover, (1986). Google Scholar

[5]

M. Born and E. Wolf, Principles of Optics,, Cambridge University Press, (1999). doi: 10.1017/CBO9781139644181. Google Scholar

[6]

F. Brenguier, N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant and A. Nercessian, Towards forecasting volcanic eruptions using seismic noise,, Nature Geoscience, 1 (2008), 126. doi: 10.1038/ngeo104. Google Scholar

[7]

T. Callaghan, N. Czink, F. Mani, A. Paulraj and G. Papanicolaou, Correlation-based radio localization in an indoor environment,, EURASIP Journal on Wireless Communications and Networking, 2011 (2011). doi: 10.1186/1687-1499-2011-135. Google Scholar

[8]

J. F. Claerbout, Imaging the Earth's Interior,, Blackwell Scientific Publications, (1985). Google Scholar

[9]

Y. Colin de Verdière, Semiclassical analysis and passive imaging,, Nonlinearity, 22 (2009). doi: 10.1088/0951-7715/22/6/R01. Google Scholar

[10]

L. Erdös and H.-T. Yau, Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation,, Comm. Pure Appl. Math., 53 (2000), 667. doi: 10.1002/(SICI)1097-0312(200006)53:6<667::AID-CPA1>3.0.CO;2-5. Google Scholar

[11]

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media,, Springer, (2007). doi: 10.1007/978-0-387-49808-9_4. Google Scholar

[12]

U. Frisch, Wave Propagation in Random Media,, in Probabilistic Methods in Applied Mathematics, 1 (1968), 75. Google Scholar

[13]

J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium,, SIAM J. Imaging Sciences, 2 (2009), 396. doi: 10.1137/080723454. Google Scholar

[14]

J. Garnier and G. Papanicolaou, Resolution analysis for imaging with noise,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/7/074001. Google Scholar

[15]

J. Garnier and K. Sølna, Cross correlation and deconvolution of noise signals in randomly layered media,, SIAM J. Imaging Sciences, 3 (2010), 809. doi: 10.1137/090757538. Google Scholar

[16]

O. A. Godin, Accuracy of the deterministic travel time retrieval from cross-correlations of non-diffuse ambient noise,, J. Acoust. Soc. Am., 126 (2009). doi: 10.1121/1.3258064. Google Scholar

[17]

P. Gouédard, L. Stehly, F. Brenguier, M. Campillo, Y. Colin de Verdière, E. Larose, L. Margerin, P. Roux, F. J. Sanchez-Sesma, N. M. Shapiro and R. L. Weaver, Cross-correlation of random fields: Mathematical approach and applications,, Geophysical Prospecting, 56 (2008), 375. Google Scholar

[18]

P. A. Martin, Acoustic scattering by inhomogeneous obstacles,, SIAM J. Appl. Math., 64 (2003), 297. doi: 10.1137/S0036139902414379. Google Scholar

[19]

P. M. Morse and K. U. Ingard, Theoretical Acoustics,, McGraw-Hill, (1968). Google Scholar

[20]

G. Papanicolaou, L. Ryzhik and K. Sølna, Self-averaging from lateral diversity in the Ito-Schroedinger equation,, SIAM Journal on Multiscale Modeling and Simulation, 6 (2007), 468. doi: 10.1137/060668882. Google Scholar

[21]

P. Roux, K. G. Sabra, W. A. Kuperman and A. Roux, Ambient noise cross correlation in free space: Theoretical approach,, J. Acoust. Soc. Am., 117 (2005), 79. doi: 10.1121/1.1830673. Google Scholar

[22]

L. V. Ryzhik, G. C. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media,, Wave Motion, 24 (1996), 327. doi: 10.1016/S0165-2125(96)00021-2. Google Scholar

[23]

N. M. Shapiro, M. Campillo, L. Stehly and M. H. Ritzwoller, High-resolution surface wave tomography from ambient noise,, Science, 307 (2005), 1615. doi: 10.1126/science.1108339. Google Scholar

[24]

P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena,, Academic Press, (1995). Google Scholar

[25]

R. Snieder, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.046610. Google Scholar

[26]

L. Stehly, M. Campillo, B. Froment and R. Weaver, Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise,, J. Geophys. Res., 113 (2008). doi: 10.1029/2008JB005693. Google Scholar

[27]

L. Stehly, M. Campillo and N. M. Shapiro, A study of the seismic noise from its long-range correlation properties,, Geophys. Res. Lett., 111 (2006). doi: 10.1029/2005JB004237. Google Scholar

[28]

M. C. W. van Rossum and Th. M. Nieuwenhuizen, Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion,, Reviews of Modern Physics, 71 (1999), 313. Google Scholar

[29]

K. Wapenaar and J. Fokkema, Green's function representations for seismic interferometry,, Geophysics, 71 (2006). Google Scholar

[30]

R. Weaver and O. I. Lobkis, Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies,, Phys. Rev. Lett., 87 (2001). doi: 10.1103/PhysRevLett.87.134301. Google Scholar

[31]

H. Yao, R. D. van der Hilst and M. V. de Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps,, Geophysical Journal International, 166 (2006), 732. doi: 10.1111/j.1365-246X.2006.03028.x. Google Scholar

[1]

Mathias Fink, Josselin Garnier. Ambient noise correlation-based imaging with moving sensors. Inverse Problems & Imaging, 2017, 11 (3) : 477-500. doi: 10.3934/ipi.2017022

[2]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[3]

Jingzhi Li, Hongyu Liu, Hongpeng Sun, Jun Zou. Imaging acoustic obstacles by singular and hypersingular point sources. Inverse Problems & Imaging, 2013, 7 (2) : 545-563. doi: 10.3934/ipi.2013.7.545

[4]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[5]

Josselin Garnier, Knut Solna. Filtered Kirchhoff migration of cross correlations of ambient noise signals. Inverse Problems & Imaging, 2011, 5 (2) : 371-390. doi: 10.3934/ipi.2011.5.371

[6]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[7]

Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems & Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235

[8]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[9]

Matti Lassas, Teemu Saksala, Hanming Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Problems & Imaging, 2018, 12 (4) : 993-1031. doi: 10.3934/ipi.2018042

[10]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[11]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[12]

Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations & Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042

[13]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[14]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[15]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[16]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[17]

João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks & Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223

[18]

Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048

[19]

Thanh-Tung Pham, Thomas Green, Jonathan Chen, Phuong Truong, Aditya Vaidya, Linda Bushnell. A salinity sensor system for estuary studies. Networks & Heterogeneous Media, 2009, 4 (2) : 381-392. doi: 10.3934/nhm.2009.4.381

[20]

Diego Rapoport. Random representations of viscous fluids and the passive magnetic fields transported on them. Conference Publications, 2001, 2001 (Special) : 327-336. doi: 10.3934/proc.2001.2001.327

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]