May  2014, 8(2): 475-489. doi: 10.3934/ipi.2014.8.475

A Rellich type theorem for discrete Schrödinger operators

1. 

Division of Mathematics, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan, Japan

Received  July 2013 Revised  November 2013 Published  May 2014

An analogue of Rellich's theorem is proved for discrete Laplacians on square lattices, and applied to show unique continuation properties on certain domains as well as non-existence of embedded eigenvalues for discrete Schrödinger operators.
Citation: Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475
References:
[1]

S. Agmon, Lower bounds for solutions of Schrödinger equations,, J. d'Anal. Math., 23 (1970), 1. doi: 10.1007/BF02795485. Google Scholar

[2]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics,, J. d'Anal. Math., 30 (1976), 1. doi: 10.1007/BF02786703. Google Scholar

[3]

E. M. Chirka, Complex Analytic Sets,, Mathematics and Its applications, (1989). Google Scholar

[4]

J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks,, Trans. Amer. Math. Soc., 284 (1984), 787. doi: 10.1090/S0002-9947-1984-0743744-X. Google Scholar

[5]

D. M. Eidus, The principle of limiting absorption,, Amer. Math. Soc. Transl. Set. 2, 47 (1962), 157. Google Scholar

[6]

M. S. Eskina, The direct and the inverse scattering problem for a partial difference equation,, Soviet Math. Doklady, 7 (1966), 193. Google Scholar

[7]

C. Gérard and F. Nier, The Mourre theory for analytically fibered operators,, J. Funct. Anal., 152 (1989), 202. doi: 10.1006/jfan.1997.3154. Google Scholar

[8]

F. Hiroshima, I. Sasaki, T. Shirai and A. Suzuki, Note on the spectrum of discrete Schrödinger operators,, J. Math-for-Industry, 4 (2012), 105. Google Scholar

[9]

L. Hörmander, Lower bounds at infinity for solutions of differential equations with constant coefficients,, Israel J. Math., 16 (1973), 103. doi: 10.1007/BF02761975. Google Scholar

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Pseudo-Differential Operators,, Classics in Mathematics. Springer, (2007). Google Scholar

[11]

H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators,, Ann. Henri Poincaré, 13 (2012), 751. doi: 10.1007/s00023-011-0141-0. Google Scholar

[12]

H. Isozaki and H. Morioka, Inverse scattering at a fixed energy for discrete Schrödinger operators on the square lattice,, preprint, (). Google Scholar

[13]

T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient,, CPAM, 12 (1959), 403. doi: 10.1002/cpa.3160120302. Google Scholar

[14]

S. G. Krantz, Function Theory of Several Complex Variables,, John Wiley and Sons Inc., (1982). Google Scholar

[15]

P. Kuchment and B. Vainberg, On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials,, Comm. PDE, 25 (2000), 1809. doi: 10.1080/03605300008821568. Google Scholar

[16]

W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients,, Trans. Amer. Math. Soc., 123 (1966), 449. doi: 10.1090/S0002-9947-1966-0197951-7. Google Scholar

[17]

W. Littman, Decay at infinity of solutions to higher order partial differential equations: Removal of the curvature assumption,, Israel J. Math., 8 (1970), 403. doi: 10.1007/BF02798687. Google Scholar

[18]

M. Murata, Asymptotic behaviors at infinity of solutions to certain linear partial differential equations,, J. Fac. Sci. Univ. Tokyo Sec. IA, 23 (1976), 107. Google Scholar

[19]

F. Rellich, Über das asymptotische Verhalten der Lösungen von $\Delta u + \lambda u = 0$ in unendlichen Gebieten,, Jahresber. Deitch. Math. Verein., 53 (1943), 57. Google Scholar

[20]

S. N. Roze, The spectrum of a second-order elliptic operator,, Math. Sb., 80 (1969), 195. Google Scholar

[21]

W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Applicable Analysis, 80 (2001), 525. doi: 10.1080/00036810108841007. Google Scholar

[22]

I. R. Shafarevich, Basic Algebraic Geometry 1,, $2^{nd}$ edition, (1994). Google Scholar

[23]

F. Treves, Differential polynomials and decay at infinity,, Bull. Amer. Math. Soc., 66 (1960), 184. doi: 10.1090/S0002-9904-1960-10423-5. Google Scholar

[24]

E. Vekua, On metaharmonic functions,, Trudy Tbiliss. Mat. Inst., 12 (1943), 105. Google Scholar

[25]

M. Zworski, Semiclassical Analysis,, Graduate studies in Mathematics, (2012). Google Scholar

show all references

References:
[1]

S. Agmon, Lower bounds for solutions of Schrödinger equations,, J. d'Anal. Math., 23 (1970), 1. doi: 10.1007/BF02795485. Google Scholar

[2]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics,, J. d'Anal. Math., 30 (1976), 1. doi: 10.1007/BF02786703. Google Scholar

[3]

E. M. Chirka, Complex Analytic Sets,, Mathematics and Its applications, (1989). Google Scholar

[4]

J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks,, Trans. Amer. Math. Soc., 284 (1984), 787. doi: 10.1090/S0002-9947-1984-0743744-X. Google Scholar

[5]

D. M. Eidus, The principle of limiting absorption,, Amer. Math. Soc. Transl. Set. 2, 47 (1962), 157. Google Scholar

[6]

M. S. Eskina, The direct and the inverse scattering problem for a partial difference equation,, Soviet Math. Doklady, 7 (1966), 193. Google Scholar

[7]

C. Gérard and F. Nier, The Mourre theory for analytically fibered operators,, J. Funct. Anal., 152 (1989), 202. doi: 10.1006/jfan.1997.3154. Google Scholar

[8]

F. Hiroshima, I. Sasaki, T. Shirai and A. Suzuki, Note on the spectrum of discrete Schrödinger operators,, J. Math-for-Industry, 4 (2012), 105. Google Scholar

[9]

L. Hörmander, Lower bounds at infinity for solutions of differential equations with constant coefficients,, Israel J. Math., 16 (1973), 103. doi: 10.1007/BF02761975. Google Scholar

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Pseudo-Differential Operators,, Classics in Mathematics. Springer, (2007). Google Scholar

[11]

H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators,, Ann. Henri Poincaré, 13 (2012), 751. doi: 10.1007/s00023-011-0141-0. Google Scholar

[12]

H. Isozaki and H. Morioka, Inverse scattering at a fixed energy for discrete Schrödinger operators on the square lattice,, preprint, (). Google Scholar

[13]

T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient,, CPAM, 12 (1959), 403. doi: 10.1002/cpa.3160120302. Google Scholar

[14]

S. G. Krantz, Function Theory of Several Complex Variables,, John Wiley and Sons Inc., (1982). Google Scholar

[15]

P. Kuchment and B. Vainberg, On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials,, Comm. PDE, 25 (2000), 1809. doi: 10.1080/03605300008821568. Google Scholar

[16]

W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients,, Trans. Amer. Math. Soc., 123 (1966), 449. doi: 10.1090/S0002-9947-1966-0197951-7. Google Scholar

[17]

W. Littman, Decay at infinity of solutions to higher order partial differential equations: Removal of the curvature assumption,, Israel J. Math., 8 (1970), 403. doi: 10.1007/BF02798687. Google Scholar

[18]

M. Murata, Asymptotic behaviors at infinity of solutions to certain linear partial differential equations,, J. Fac. Sci. Univ. Tokyo Sec. IA, 23 (1976), 107. Google Scholar

[19]

F. Rellich, Über das asymptotische Verhalten der Lösungen von $\Delta u + \lambda u = 0$ in unendlichen Gebieten,, Jahresber. Deitch. Math. Verein., 53 (1943), 57. Google Scholar

[20]

S. N. Roze, The spectrum of a second-order elliptic operator,, Math. Sb., 80 (1969), 195. Google Scholar

[21]

W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Applicable Analysis, 80 (2001), 525. doi: 10.1080/00036810108841007. Google Scholar

[22]

I. R. Shafarevich, Basic Algebraic Geometry 1,, $2^{nd}$ edition, (1994). Google Scholar

[23]

F. Treves, Differential polynomials and decay at infinity,, Bull. Amer. Math. Soc., 66 (1960), 184. doi: 10.1090/S0002-9904-1960-10423-5. Google Scholar

[24]

E. Vekua, On metaharmonic functions,, Trudy Tbiliss. Mat. Inst., 12 (1943), 105. Google Scholar

[25]

M. Zworski, Semiclassical Analysis,, Graduate studies in Mathematics, (2012). Google Scholar

[1]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[2]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[3]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[4]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[5]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

[6]

Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933

[7]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[8]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[9]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[10]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[11]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[12]

Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095

[13]

Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555

[14]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

[15]

Toshiyuki Suzuki. Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 1019-1024. doi: 10.3934/proc.2015.1019

[16]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[17]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1589-1615. doi: 10.3934/dcdsb.2018221

[18]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[19]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[20]

Helge Krüger. Asymptotic of gaps at small coupling and applications of the skew-shift Schrödinger operator. Conference Publications, 2011, 2011 (Special) : 874-880. doi: 10.3934/proc.2011.2011.874

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]