• Previous Article
    An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method
  • IPI Home
  • This Issue
  • Next Article
    Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map
November  2014, 8(4): 1117-1137. doi: 10.3934/ipi.2014.8.1117

Calderón problem for Maxwell's equations in cylindrical domain

1. 

Department of Mathematics, Colorado State University,101 Weber Building, Fort Colins, CO 80523-1784, United States

2. 

Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro Tokyo 153-8914

Received  December 2013 Revised  September 2014 Published  November 2014

We prove some uniqueness results in determination of the conductivity, the permeability and the permittivity of Maxwell's equations in a cylindrical domain $\Omega \times (0,L)$ from partial boundary map. More specifically, for an arbitrarily given subboundary $\Gamma_0 \subset \partial\Omega$, we prove that the coefficients of Maxwell's equations can be uniquely determined in the subdomain $(\Omega \setminus$ [the convex hull of $\Gamma_0])$ $ \times (0,L)$ by the boundary map only for inputs vanishing on $\Gamma_0 \times (0,L)$.
Citation: Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117
References:
[1]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms,, Duke Math. J., 55 (1987), 943. doi: 10.1215/S0012-7094-87-05547-5. Google Scholar

[2]

A. P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65. Google Scholar

[3]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. P.D.E., 34 (2009), 1425. doi: 10.1080/03605300903296272. Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, Springer-Verlag, (1990). Google Scholar

[5]

S. Helgason, Integral Geometry and Radon Transforms,, Springer-Verlag, (2011). doi: 10.1007/978-1-4419-6055-9. Google Scholar

[6]

O. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions,, J. Amer. Math. Soc., 23 (2010), 655. doi: 10.1090/S0894-0347-10-00656-9. Google Scholar

[7]

O. Imanuvilov and M. Yamamoto, Inverse boundary value problem for the Schrödinger equation in cylindrical domain by partial boundary data,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/4/045002. Google Scholar

[8]

O. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries,, Milan J. Math., 81 (2013), 187. doi: 10.1007/s00032-013-0205-3. Google Scholar

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95. doi: 10.3934/ipi.2007.1.95. Google Scholar

[10]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications,, Mathematical Subject Classification, 6 (2013), 2003. doi: 10.2140/apde.2013.6.2003. Google Scholar

[11]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71. doi: 10.2307/2118653. Google Scholar

[12]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics,, Duke . Math. J., 70 (1993), 617. doi: 10.1215/S0012-7094-93-07014-7. Google Scholar

[13]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291. Google Scholar

show all references

References:
[1]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms,, Duke Math. J., 55 (1987), 943. doi: 10.1215/S0012-7094-87-05547-5. Google Scholar

[2]

A. P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65. Google Scholar

[3]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. P.D.E., 34 (2009), 1425. doi: 10.1080/03605300903296272. Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, Springer-Verlag, (1990). Google Scholar

[5]

S. Helgason, Integral Geometry and Radon Transforms,, Springer-Verlag, (2011). doi: 10.1007/978-1-4419-6055-9. Google Scholar

[6]

O. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions,, J. Amer. Math. Soc., 23 (2010), 655. doi: 10.1090/S0894-0347-10-00656-9. Google Scholar

[7]

O. Imanuvilov and M. Yamamoto, Inverse boundary value problem for the Schrödinger equation in cylindrical domain by partial boundary data,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/4/045002. Google Scholar

[8]

O. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries,, Milan J. Math., 81 (2013), 187. doi: 10.1007/s00032-013-0205-3. Google Scholar

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95. doi: 10.3934/ipi.2007.1.95. Google Scholar

[10]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications,, Mathematical Subject Classification, 6 (2013), 2003. doi: 10.2140/apde.2013.6.2003. Google Scholar

[11]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71. doi: 10.2307/2118653. Google Scholar

[12]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics,, Duke . Math. J., 70 (1993), 617. doi: 10.1215/S0012-7094-93-07014-7. Google Scholar

[13]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291. Google Scholar

[1]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[2]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[3]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems & Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[4]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[5]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[6]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[7]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[8]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[9]

Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 649-666. doi: 10.3934/dcds.2004.11.649

[10]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[11]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[12]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[13]

Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021

[14]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[15]

Angkana Rüland, Eva Sincich. Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Problems & Imaging, 2019, 13 (5) : 1023-1044. doi: 10.3934/ipi.2019046

[16]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[17]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[18]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

[19]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[20]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]