August  2013, 7(3): 885-906. doi: 10.3934/ipi.2013.7.885

Multi-view foreground segmentation via fourth order tensor learning

1. 

Centre for Mathematical Imaging and Vision and Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China, China

2. 

School of Mathematics and Statistics, Lanzhou University, Gansu, China

Received  July 2012 Revised  April 2013 Published  September 2013

In this paper, we present a novel fuse-before-detect algorithm for multi-view foreground segmentation via fourth order tensor learning. By using several camera views, most of the existing algorithms first detect the various object features for each view and then fuse the data together for foreground segmentation or tracking. However, this kind of single view foreground segmentation algorithm always suffers from various environmental problems, such as reflection and shadow induced by shiny objects, especially floor and wall. These segmentation errors reduce the accuracy of the multi-view tracking algorithms. In the proposed algorithm, we first fuse multi-view camera data to a fourth-order tensor through multiple parallelized planes projections. An incremental fourth-order tensor learning algorithm is then employed to perform foreground segmentation in the fused tensor data. By collecting all the information from different views, this approach could restrain the specific environmental effects in each view and give better segmentation results. Experimental results are reported to show the performance of the proposed method is better than the state-of-the-art methods in challenged environments.
Citation: Michael K. Ng, Chi-Pan Tam, Fan Wang. Multi-view foreground segmentation via fourth order tensor learning. Inverse Problems & Imaging, 2013, 7 (3) : 885-906. doi: 10.3934/ipi.2013.7.885
References:
[1]

C. Stauffer and W. E. L. Grimson, Adaptive background mixture models for real-time tracking,, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2 (1999), 246. doi: 10.1109/CVPR.1999.784637. Google Scholar

[2]

A. Elgammal, D. Harwood and L. Davis, Non-parametric model for background subtraction,, Proceedings of the European Conference on Computer Vision, 1843 (2000), 751. Google Scholar

[3]

W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank and Z. Zhang, Incremental tensor subspace learning and its applications to foreground segmentation and tracking,, International Journal of Computer vision, 91 (2011), 303. Google Scholar

[4]

M. Taj and A. Cavallaro, Multi-view multi-object detection and tracking,, Computer Vision, 285 (2010), 263. doi: 10.1007/978-3-642-12848-6_10. Google Scholar

[5]

S. M. Khan and M. Shah, Tracking multiple occluding people by localizing on multiple scene planes,, IEEE Transaction on Pattren Analysis and Machine Intelligence, 31 (2009), 505. doi: 10.1109/TPAMI.2008.102. Google Scholar

[6]

A. Criminisi, I. Reid and A. Zisserman, Single view metrology,, International Journal of Computer Vision, 40 (2000), 123. Google Scholar

[7]

L. De Lathauwer, B. De Moor and J. Vandewalle, On the best rank-1, and rank-($R_1$, $R_2$, ..., $R_n$) approximation of higher-order tensors,, SIAM Journal of Matrix Analysis and Applications, 21 (2000), 1324. doi: 10.1137/S0895479898346995. Google Scholar

[8]

R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision,", Second edition, (2003). Google Scholar

[9]

D. A. Ross, J. Lim, R.-S. Lin and M.-H. Yang, Incremental learning for robust visual tracking,, International Journal of Computer Vision, 77 (2008), 125. doi: 10.1007/s11263-007-0075-7. Google Scholar

[10]

B. Li, K. Peng, X. Ying and H. Zha, Simultaneous vanishing point detection and camera calibration from single images,, in, 6454 (2010), 151. doi: 10.1007/978-3-642-17274-8_15. Google Scholar

show all references

References:
[1]

C. Stauffer and W. E. L. Grimson, Adaptive background mixture models for real-time tracking,, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2 (1999), 246. doi: 10.1109/CVPR.1999.784637. Google Scholar

[2]

A. Elgammal, D. Harwood and L. Davis, Non-parametric model for background subtraction,, Proceedings of the European Conference on Computer Vision, 1843 (2000), 751. Google Scholar

[3]

W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank and Z. Zhang, Incremental tensor subspace learning and its applications to foreground segmentation and tracking,, International Journal of Computer vision, 91 (2011), 303. Google Scholar

[4]

M. Taj and A. Cavallaro, Multi-view multi-object detection and tracking,, Computer Vision, 285 (2010), 263. doi: 10.1007/978-3-642-12848-6_10. Google Scholar

[5]

S. M. Khan and M. Shah, Tracking multiple occluding people by localizing on multiple scene planes,, IEEE Transaction on Pattren Analysis and Machine Intelligence, 31 (2009), 505. doi: 10.1109/TPAMI.2008.102. Google Scholar

[6]

A. Criminisi, I. Reid and A. Zisserman, Single view metrology,, International Journal of Computer Vision, 40 (2000), 123. Google Scholar

[7]

L. De Lathauwer, B. De Moor and J. Vandewalle, On the best rank-1, and rank-($R_1$, $R_2$, ..., $R_n$) approximation of higher-order tensors,, SIAM Journal of Matrix Analysis and Applications, 21 (2000), 1324. doi: 10.1137/S0895479898346995. Google Scholar

[8]

R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision,", Second edition, (2003). Google Scholar

[9]

D. A. Ross, J. Lim, R.-S. Lin and M.-H. Yang, Incremental learning for robust visual tracking,, International Journal of Computer Vision, 77 (2008), 125. doi: 10.1007/s11263-007-0075-7. Google Scholar

[10]

B. Li, K. Peng, X. Ying and H. Zha, Simultaneous vanishing point detection and camera calibration from single images,, in, 6454 (2010), 151. doi: 10.1007/978-3-642-17274-8_15. Google Scholar

[1]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[2]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[3]

Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345

[4]

Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55

[5]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[6]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[7]

Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247

[8]

Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541

[9]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[10]

Abdelwahab Bensouilah, Sahbi Keraani. Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2961-2976. doi: 10.3934/dcds.2019123

[11]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[12]

Ahmed El Kaimbillah, Oussama Bourihane, Bouazza Braikat, Mohammad Jamal, Foudil Mohri, Noureddine Damil. Efficient high-order implicit solvers for the dynamic of thin-walled beams with open cross section under external arbitrary loadings. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1685-1708. doi: 10.3934/dcdss.2019113

[13]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic & Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[14]

T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217

[15]

João Fialho, Feliz Minhós. High order periodic impulsive problems. Conference Publications, 2015, 2015 (special) : 446-454. doi: 10.3934/proc.2015.0446

[16]

Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759

[17]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[18]

Ariadna Farrés, Àngel Jorba. On the high order approximation of the centre manifold for ODEs. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 977-1000. doi: 10.3934/dcdsb.2010.14.977

[19]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[20]

Yuezheng Gong, Jiaquan Gao, Yushun Wang. High order Gauss-Seidel schemes for charged particle dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 573-585. doi: 10.3934/dcdsb.2018034

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]