
Previous Article
The attenuated magnetic ray transform on surfaces
 IPI Home
 This Issue

Next Article
Bayesian inverse problems with Monte Carlo forward models
Detecting small low emission radiating sources
1.  Siemens AG, Corporate Technology, OttoHahnRing 6, 81739 Munich, Germany 
2.  The University of Texas Medical Branch, 301 UniversityBoulevard, Galveston, TX 77555, United States 
3.  Institute for Mathematics and its Applications, University of Minnesota, 400 Lind Hall, Minneapolis, MN 55455, United States 
4.  Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX 77843, United States, United States 
References:
[1] 
R. Basko, G. L. Zeng and G. T. Gullberg, Analytical reconstruction formula for onedimensional compton camera,, IEEE Transactions on Nuclear Science, 44 (1997), 1342. Google Scholar 
[2] 
R. Basko, G. L. Zeng and G. T. Gullberg, Application of spherical harmonics to image reconstruction for the compton camera,, Physics in Medicine and Biology, 43 (1998), 887. Google Scholar 
[3] 
R. R. Brechner and M. Singh, Iterative reconstruction of electronically collimated spect images,, IEEE Transactions on Nuclear Science, 37 (1990), 1328. Google Scholar 
[4] 
T. F. Budinger, G. T. Gullberg and R. H. Huseman, Emission computed tomography,, in, (1979), 147. Google Scholar 
[5] 
W. Charlton and G. Spence, Private, communication, (2009). Google Scholar 
[6] 
N. H. Clinthorne, ChorYi Ng, ChiaHo Hua, J. E. Gormley, J. W. LeBlanc, S. J. Wilderman and W. L. Rogers, Theoretical performance comparison of a comptonscatter aperture and parallelhole collimator,, in, 2 (1996), 788. Google Scholar 
[7] 
S. Coles, "An Introduction to Statistical Modeling of Extreme Values,", Springer Series in Statistics, (2001). Google Scholar 
[8] 
M. J. Cree and P. J. Bones, Towards direct reconstruction from a gamma camera based on compton scattering,, IEEE Transactions on Medical Imaging, 13 (1994), 398. Google Scholar 
[9] 
Y. F. Du, Z. He, G. F. Knoll, D. K. Wehe and W. Li, Evaluation of a compton scattering camera using 3D position sensitive CdZnTe detectors,, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 457 (2001), 203. Google Scholar 
[10] 
L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar 
[11] 
A. Faridani, E. L. Ritman and K. T. Smith, Local tomography,, SIAM Journal on Applied Mathematics, 52 (1992), 459. doi: 10.1137/0152026. Google Scholar 
[12] 
T. Fawcett, An introduction to ROC analysis,, Pattern Recognition Letters, 27 (2006), 861. Google Scholar 
[13] 
G. T. Gullberg, G. L. Zeng and R. Basko, Image reconstruction from vprojections acquired by compton camera,, US Patent 5841141, (5841). Google Scholar 
[14] 
D. L. Gunter, Filtered backprojection algorithm for compton telescopes,, US Patent 7345283, (7345). Google Scholar 
[15] 
T. Hebert, R. Leahy and M. Singh, Threedimensional maximumlikelihood reconstruction for an electronically collimated singlephotonemission,, Journal of the Optical Society of America A, 7 (1990), 1305. Google Scholar 
[16] 
W. H. Hill and K. L. Matthews, Experimental verification of a hand held electronicallycollimated radiation detector,, in, 5 (2007), 3792. Google Scholar 
[17] 
M. Hirasawa and T. Tomitani, An analytical image reconstruction algorithm to compensate for scattering angle broadening in compton cameras,, Physics in Medicine and Biology, 48 (2003), 1009. Google Scholar 
[18] 
Y. Hristova, "Mathematical Problems of Thermoacoustic and Compton Camera Imaging,", Ph.D thesis, (2010). Google Scholar 
[19] 
A. C. Kak and M. Slaney, "Principles of Computerized Tomographic Imaging,", IEEE Press, (1988). Google Scholar 
[20] 
P. Kuchment, Generalized transforms of radon type and their applications,, in, 63 (2006), 67. Google Scholar 
[21] 
P. Kuchment, K. Lancaster and L. Mogilevskaya, On local tomography,, Inverse Problems, 11 (1995), 571. Google Scholar 
[22] 
A. W. Lackie, K. L. Matthews, B. M. Smith, W. Hill, WeiHsung Wang and M. L. Cherry, A directional algorithm for an electronicallycollimated gammaray detector,, in, 1 (2006), 264. Google Scholar 
[23] 
J. W. LeBlanc, N. H. Clinthorne, C.H. Hua, E. Nygard, W. L. Rogers, D. K. Wehe, P. Weilhammer and S. J. Wilderman, Csprint: A prototype compton camera system for low energy gamma ray imaging,, in, 1 (1997), 357. Google Scholar 
[24] 
C. M. Marianno, D. R. Boyle, W. S. Charlton, G. M. Gaukler and A. Veditz, A guide for detector development and deployment,, in, (2010), 3901. Google Scholar 
[25] 
V. Maxim, M. Frandeş and R. Prost, Analytical inversion of the Compton transform using the full set of available projections,, Inverse Problems, 25 (2009). doi: 10.1088/02665611/25/9/095001. Google Scholar 
[26] 
F. Natterer, "The Mathematics of Computerized Tomography,", Society for Industrial and Applied Mathematics, (2001). doi: 10.1137/1.9780898719284. Google Scholar 
[27] 
F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", Reprint of the 1986 original, 32 (1986). Google Scholar 
[28] 
M. K. Nguyen, T. T. Truong and P. Grangeat, Radon transforms on a class of cones with fixed axis direction,, Journal of Physics A: Mathematical and General, 38 (2005), 8003. doi: 10.1088/03054470/38/37/006. Google Scholar 
[29] 
L. C. Parra, Reconstruction of conebeam projections from compton scattered data,, IEEE Transactions on Nuclear Science, 47 (2000), 1543. Google Scholar 
[30] 
R. C. Rohe, M. M. Sharfi, K. A. Kecevar, J. D. Valentine and C. Bonnerave, The spatiallyvariant backprojection point kernel function of an energysubtraction compton scatter camera for medical imaging,, IEEE Transactions on Nuclear Science, 44 (1997), 2477. Google Scholar 
[31] 
G. J. Royle and R. D. Speller, A flexible geometry compton camera for industrial gamma ray imaging,, in, 2 (1996), 821. Google Scholar 
[32] 
G. J. Royle and R. D. Speller, Compton scatter imaging of a nuclear industry site,, in, 1 (1997), 365. Google Scholar 
[33] 
A. C. Sauve, A. O. III Hero, W. L. Rogers, S. J. Wilderman and N. H. Clinthorne, 3D image reconstruction for a compton spect camera model,, IEEE Transactions on Nuclear Science, 46 (1999), 2075. Google Scholar 
[34] 
V. Schoenfelder, H. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors, A. Deerenberg, R. Diehl, A. von Dordrecht, J. W. den Herder, W. Hermsen, M. Kippen, L. Kuiper, G. Lichti, J. Lockwood, J. Macri, M. McConnell, D. Morris, R. Much, J. Ryan, G. Simpson, M. Snelling, G. Stacy, H. Steinle, A. Strong, B. N. Swanenburg, B. Taylor, C. de Vries and C. Winkler, Instrument description and performance of the imaging gammaray telescope comptel aboard the compton gammaray observatory,, Astrophysical Journal Supplement Series, 86 (1993), 657. Google Scholar 
[35] 
M. Singh, An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria,, Medical Physics, 10 (1983), 421. Google Scholar 
[36] 
M. Singh and D. Doria, An electronically collimated gamma camera for single photon emission computed tomography. Part II: Image reconstruction and preliminary experimental measurements,, Medical Physics, 10 (1983), 428. Google Scholar 
[37] 
B. Smith, Reconstruction methods and completeness conditions for two compton data models,, Journal of the Optical Society of America A, 22 (2005), 445. Google Scholar 
[38] 
G. Spence, G. Ford, R. Vanderplas and W. Charlton, Directionally sensitive neutron detectors using boron loaded semiconductors,, in, (2009), 224. Google Scholar 
[39] 
R. W. Todd, J. M. Nightingale and D. B. Everett, A proposed gamma camera,, Nature, 251 (1974), 132. Google Scholar 
[40] 
T. Tomitani and M. Hirasawa, Image reconstruction from limited angle compton camera data,, Physics in Medicine and Biology, 47 (2002), 2129. Google Scholar 
[41] 
T. T. Truong, M. K. Nguyen and H. Zaidi, The mathematical foundations of 3D compton scatter emission imaging,, International Journal of Biomedical Imaging, 2007 (). Google Scholar 
[42] 
S. Watanabe, T. Tanaka, K. Nakazawa, T. Mitani, K. Oonuki, T. Takahashi, T. Takashima, H. Tajima, Y. Fukazawa, M. Nomachi, S. Kubo, M. Onishi and Y. Kuroda, A Si/CdTe semiconductor compton camera,, IEEE Transactions on Nuclear Science, 52 (2005), 2045. Google Scholar 
[43] 
S. J. Wilderman, W. L. Rogers, G. F. Knoll and J. C. Engdahl, Fast algorithm for list mode backprojection of compton scatter camera data,, IEEE Transactions on Nuclear Science, 45 (1998), 957. Google Scholar 
[44] 
X. Xun, B. Mallick, R. J. Carroll and P. Kuchment, A Bayesian approach to the detection of small low emission sources,, Inverse Problems, 27 (2011). doi: 10.1088/02665611/27/11/115009. Google Scholar 
show all references
References:
[1] 
R. Basko, G. L. Zeng and G. T. Gullberg, Analytical reconstruction formula for onedimensional compton camera,, IEEE Transactions on Nuclear Science, 44 (1997), 1342. Google Scholar 
[2] 
R. Basko, G. L. Zeng and G. T. Gullberg, Application of spherical harmonics to image reconstruction for the compton camera,, Physics in Medicine and Biology, 43 (1998), 887. Google Scholar 
[3] 
R. R. Brechner and M. Singh, Iterative reconstruction of electronically collimated spect images,, IEEE Transactions on Nuclear Science, 37 (1990), 1328. Google Scholar 
[4] 
T. F. Budinger, G. T. Gullberg and R. H. Huseman, Emission computed tomography,, in, (1979), 147. Google Scholar 
[5] 
W. Charlton and G. Spence, Private, communication, (2009). Google Scholar 
[6] 
N. H. Clinthorne, ChorYi Ng, ChiaHo Hua, J. E. Gormley, J. W. LeBlanc, S. J. Wilderman and W. L. Rogers, Theoretical performance comparison of a comptonscatter aperture and parallelhole collimator,, in, 2 (1996), 788. Google Scholar 
[7] 
S. Coles, "An Introduction to Statistical Modeling of Extreme Values,", Springer Series in Statistics, (2001). Google Scholar 
[8] 
M. J. Cree and P. J. Bones, Towards direct reconstruction from a gamma camera based on compton scattering,, IEEE Transactions on Medical Imaging, 13 (1994), 398. Google Scholar 
[9] 
Y. F. Du, Z. He, G. F. Knoll, D. K. Wehe and W. Li, Evaluation of a compton scattering camera using 3D position sensitive CdZnTe detectors,, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 457 (2001), 203. Google Scholar 
[10] 
L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar 
[11] 
A. Faridani, E. L. Ritman and K. T. Smith, Local tomography,, SIAM Journal on Applied Mathematics, 52 (1992), 459. doi: 10.1137/0152026. Google Scholar 
[12] 
T. Fawcett, An introduction to ROC analysis,, Pattern Recognition Letters, 27 (2006), 861. Google Scholar 
[13] 
G. T. Gullberg, G. L. Zeng and R. Basko, Image reconstruction from vprojections acquired by compton camera,, US Patent 5841141, (5841). Google Scholar 
[14] 
D. L. Gunter, Filtered backprojection algorithm for compton telescopes,, US Patent 7345283, (7345). Google Scholar 
[15] 
T. Hebert, R. Leahy and M. Singh, Threedimensional maximumlikelihood reconstruction for an electronically collimated singlephotonemission,, Journal of the Optical Society of America A, 7 (1990), 1305. Google Scholar 
[16] 
W. H. Hill and K. L. Matthews, Experimental verification of a hand held electronicallycollimated radiation detector,, in, 5 (2007), 3792. Google Scholar 
[17] 
M. Hirasawa and T. Tomitani, An analytical image reconstruction algorithm to compensate for scattering angle broadening in compton cameras,, Physics in Medicine and Biology, 48 (2003), 1009. Google Scholar 
[18] 
Y. Hristova, "Mathematical Problems of Thermoacoustic and Compton Camera Imaging,", Ph.D thesis, (2010). Google Scholar 
[19] 
A. C. Kak and M. Slaney, "Principles of Computerized Tomographic Imaging,", IEEE Press, (1988). Google Scholar 
[20] 
P. Kuchment, Generalized transforms of radon type and their applications,, in, 63 (2006), 67. Google Scholar 
[21] 
P. Kuchment, K. Lancaster and L. Mogilevskaya, On local tomography,, Inverse Problems, 11 (1995), 571. Google Scholar 
[22] 
A. W. Lackie, K. L. Matthews, B. M. Smith, W. Hill, WeiHsung Wang and M. L. Cherry, A directional algorithm for an electronicallycollimated gammaray detector,, in, 1 (2006), 264. Google Scholar 
[23] 
J. W. LeBlanc, N. H. Clinthorne, C.H. Hua, E. Nygard, W. L. Rogers, D. K. Wehe, P. Weilhammer and S. J. Wilderman, Csprint: A prototype compton camera system for low energy gamma ray imaging,, in, 1 (1997), 357. Google Scholar 
[24] 
C. M. Marianno, D. R. Boyle, W. S. Charlton, G. M. Gaukler and A. Veditz, A guide for detector development and deployment,, in, (2010), 3901. Google Scholar 
[25] 
V. Maxim, M. Frandeş and R. Prost, Analytical inversion of the Compton transform using the full set of available projections,, Inverse Problems, 25 (2009). doi: 10.1088/02665611/25/9/095001. Google Scholar 
[26] 
F. Natterer, "The Mathematics of Computerized Tomography,", Society for Industrial and Applied Mathematics, (2001). doi: 10.1137/1.9780898719284. Google Scholar 
[27] 
F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", Reprint of the 1986 original, 32 (1986). Google Scholar 
[28] 
M. K. Nguyen, T. T. Truong and P. Grangeat, Radon transforms on a class of cones with fixed axis direction,, Journal of Physics A: Mathematical and General, 38 (2005), 8003. doi: 10.1088/03054470/38/37/006. Google Scholar 
[29] 
L. C. Parra, Reconstruction of conebeam projections from compton scattered data,, IEEE Transactions on Nuclear Science, 47 (2000), 1543. Google Scholar 
[30] 
R. C. Rohe, M. M. Sharfi, K. A. Kecevar, J. D. Valentine and C. Bonnerave, The spatiallyvariant backprojection point kernel function of an energysubtraction compton scatter camera for medical imaging,, IEEE Transactions on Nuclear Science, 44 (1997), 2477. Google Scholar 
[31] 
G. J. Royle and R. D. Speller, A flexible geometry compton camera for industrial gamma ray imaging,, in, 2 (1996), 821. Google Scholar 
[32] 
G. J. Royle and R. D. Speller, Compton scatter imaging of a nuclear industry site,, in, 1 (1997), 365. Google Scholar 
[33] 
A. C. Sauve, A. O. III Hero, W. L. Rogers, S. J. Wilderman and N. H. Clinthorne, 3D image reconstruction for a compton spect camera model,, IEEE Transactions on Nuclear Science, 46 (1999), 2075. Google Scholar 
[34] 
V. Schoenfelder, H. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors, A. Deerenberg, R. Diehl, A. von Dordrecht, J. W. den Herder, W. Hermsen, M. Kippen, L. Kuiper, G. Lichti, J. Lockwood, J. Macri, M. McConnell, D. Morris, R. Much, J. Ryan, G. Simpson, M. Snelling, G. Stacy, H. Steinle, A. Strong, B. N. Swanenburg, B. Taylor, C. de Vries and C. Winkler, Instrument description and performance of the imaging gammaray telescope comptel aboard the compton gammaray observatory,, Astrophysical Journal Supplement Series, 86 (1993), 657. Google Scholar 
[35] 
M. Singh, An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria,, Medical Physics, 10 (1983), 421. Google Scholar 
[36] 
M. Singh and D. Doria, An electronically collimated gamma camera for single photon emission computed tomography. Part II: Image reconstruction and preliminary experimental measurements,, Medical Physics, 10 (1983), 428. Google Scholar 
[37] 
B. Smith, Reconstruction methods and completeness conditions for two compton data models,, Journal of the Optical Society of America A, 22 (2005), 445. Google Scholar 
[38] 
G. Spence, G. Ford, R. Vanderplas and W. Charlton, Directionally sensitive neutron detectors using boron loaded semiconductors,, in, (2009), 224. Google Scholar 
[39] 
R. W. Todd, J. M. Nightingale and D. B. Everett, A proposed gamma camera,, Nature, 251 (1974), 132. Google Scholar 
[40] 
T. Tomitani and M. Hirasawa, Image reconstruction from limited angle compton camera data,, Physics in Medicine and Biology, 47 (2002), 2129. Google Scholar 
[41] 
T. T. Truong, M. K. Nguyen and H. Zaidi, The mathematical foundations of 3D compton scatter emission imaging,, International Journal of Biomedical Imaging, 2007 (). Google Scholar 
[42] 
S. Watanabe, T. Tanaka, K. Nakazawa, T. Mitani, K. Oonuki, T. Takahashi, T. Takashima, H. Tajima, Y. Fukazawa, M. Nomachi, S. Kubo, M. Onishi and Y. Kuroda, A Si/CdTe semiconductor compton camera,, IEEE Transactions on Nuclear Science, 52 (2005), 2045. Google Scholar 
[43] 
S. J. Wilderman, W. L. Rogers, G. F. Knoll and J. C. Engdahl, Fast algorithm for list mode backprojection of compton scatter camera data,, IEEE Transactions on Nuclear Science, 45 (1998), 957. Google Scholar 
[44] 
X. Xun, B. Mallick, R. J. Carroll and P. Kuchment, A Bayesian approach to the detection of small low emission sources,, Inverse Problems, 27 (2011). doi: 10.1088/02665611/27/11/115009. Google Scholar 
[1] 
Plamen Stefanov, Gunther Uhlmann. Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. Inverse Problems & Imaging, 2013, 7 (4) : 13671377. doi: 10.3934/ipi.2013.7.1367 
[2] 
ShuiNee Chow, Ke Yin, HaoMin Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 79102. doi: 10.3934/ipi.2014.8.79 
[3] 
Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 138. doi: 10.3934/amc.2013.7.1 
[4] 
Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413426. doi: 10.3934/amc.2007.1.413 
[5] 
Monika Muszkieta. A variational approach to edge detection. Inverse Problems & Imaging, 2016, 10 (2) : 499517. doi: 10.3934/ipi.2016009 
[6] 
Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete & Continuous Dynamical Systems  B, 2001, 1 (1) : 125135. doi: 10.3934/dcdsb.2001.1.125 
[7] 
Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121147. doi: 10.3934/mfc.2018007 
[8] 
Philip Lafrance, Alfred Menezes. On the security of the WOTSPRF signature scheme. Advances in Mathematics of Communications, 2019, 13 (1) : 185193. doi: 10.3934/amc.2019012 
[9] 
Riccardo Aragona, Alessio Meneghetti. Typepreserving matrices and security of block ciphers. Advances in Mathematics of Communications, 2019, 13 (2) : 235251. doi: 10.3934/amc.2019016 
[10] 
Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 12451262. doi: 10.3934/ipi.2018052 
[11] 
Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173197. doi: 10.3934/ipi.2014.8.173 
[12] 
Plamen Stefanov, Wenxiang Cong, Ge Wang. Modulated luminescence tomography. Inverse Problems & Imaging, 2015, 9 (2) : 579589. doi: 10.3934/ipi.2015.9.579 
[13] 
Elena Beretta, Markus Grasmair, Monika Muszkieta, Otmar Scherzer. A variational algorithm for the detection of line segments. Inverse Problems & Imaging, 2014, 8 (2) : 389408. doi: 10.3934/ipi.2014.8.389 
[14] 
Liming Zhang, Tao Qian, Qingye Zeng. Edge detection by using rotational wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 899915. doi: 10.3934/cpaa.2007.6.899 
[15] 
Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375396. doi: 10.3934/mcrf.2013.3.375 
[16] 
Bertrand Lods. Variational characterizations of the effective multiplication factor of a nuclear reactor core. Kinetic & Related Models, 2009, 2 (2) : 307331. doi: 10.3934/krm.2009.2.307 
[17] 
Florian Caro, Bilal Saad, Mazen Saad. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository. Discrete & Continuous Dynamical Systems  S, 2014, 7 (2) : 191205. doi: 10.3934/dcdss.2014.7.191 
[18] 
Jian Mao, Qixiao Lin, Jingdong Bian. Application of learning algorithms in smart home IoT system security. Mathematical Foundations of Computing, 2018, 1 (1) : 6376. doi: 10.3934/mfc.2018004 
[19] 
Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143153. doi: 10.3934/jimo.2008.4.143 
[20] 
Neal Koblitz, Alfred Menezes. Critical perspectives on provable security: Fifteen years of "another look" papers. Advances in Mathematics of Communications, 2019, 13 (4) : 517558. doi: 10.3934/amc.2019034 
2018 Impact Factor: 1.469
Tools
Metrics
Other articles
by authors
[Back to Top]