2013, 7(1): 253-265. doi: 10.3934/ipi.2013.7.253

Quantitative photoacoustic tomography with variable index of refraction

1. 

Department of Mathematics, University of Washington, Seattle, WA 98195-4350, United States

Received  March 2012 Revised  June 2012 Published  February 2013

Photoacoustic tomography is a rapidly developing medical imaging technique that combines optical and ultrasound imaging to exploit the high contrast and high resolution of the respective individual modalities. Mathematically, photoacoustic tomography is divided into two steps. In the first step, one solves an inverse problem for the wave equation to determine how tissue absorbs light as a result of a boundary illumination. The second step is generally modeled by either diffusion or transport equations, and involves recovering the optical properties of the region being imaged.
    In this paper we, address the second step of photoacoustics, and in particular, we show that the absorption coefficient in the stationary transport equation can be recovered given certain internal information about the solution. We will consider the variable index of refraction case, which will correspond to an inverse transport problem on a Riemannian manifold with internal data and a known metric. We will prove a stability estimate for a functional of the absorption coefficient of the medium by finding a singular decomposition for the distribution kernel of the measurement operator. Finally, we will use this estimate to recover the desired absorption properties.
Citation: Lee Patrolia. Quantitative photoacoustic tomography with variable index of refraction. Inverse Problems & Imaging, 2013, 7 (1) : 253-265. doi: 10.3934/ipi.2013.7.253
References:
[1]

G. Bal, A. Jollivet and V. Jugnon, Inverse transport theory of photoacoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/2/025011.

[2]

G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085010.

[3]

M. Choulli and P. Stefanov, An inverse boundary value problem for the stationary transport equation,, Osaka J. Math., 36 (1999), 87.

[4]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean value over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213. doi: 10.1137/S0036141002417814.

[5]

Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/5/055006.

[6]

P. Kuckment and L. Kunyansky, Mathematics of thermoacoustic tomography,, Euro. J. Appl. Math., 19 (2008), 191. doi: 10.1017/S0956792508007353.

[7]

S. McDowall, An inverse problem for the transport equation in the presence of a Riemannian metric,, Pacific Journal of Math., 216 (2004), 303. doi: 10.2140/pjm.2004.216.303.

[8]

S. McDowall, P. Stefanov and A. Tamasan, Stability of the gauge equivalent classes in inverse stationary transport,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/2/025006.

[9]

S. McDowall, P. Stefanov and A. Tamasan, Stability of the gauge equivalent classes in inverse stationary transport in refractive media,, in, 559 (2011), 85. doi: 10.1090/conm/559/11074.

[10]

P. Stefanov and G. Uhlmann, Theromoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075011.

[11]

P. Stefanov and G. Uhlmann, Thermoacoustic tomography arising in brain imaging,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/4/045004.

[12]

L. Wang, ed., "Photoacoustic Imaging and Spectroscopy,", CRC Press, (2009).

show all references

References:
[1]

G. Bal, A. Jollivet and V. Jugnon, Inverse transport theory of photoacoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/2/025011.

[2]

G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085010.

[3]

M. Choulli and P. Stefanov, An inverse boundary value problem for the stationary transport equation,, Osaka J. Math., 36 (1999), 87.

[4]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean value over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213. doi: 10.1137/S0036141002417814.

[5]

Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/5/055006.

[6]

P. Kuckment and L. Kunyansky, Mathematics of thermoacoustic tomography,, Euro. J. Appl. Math., 19 (2008), 191. doi: 10.1017/S0956792508007353.

[7]

S. McDowall, An inverse problem for the transport equation in the presence of a Riemannian metric,, Pacific Journal of Math., 216 (2004), 303. doi: 10.2140/pjm.2004.216.303.

[8]

S. McDowall, P. Stefanov and A. Tamasan, Stability of the gauge equivalent classes in inverse stationary transport,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/2/025006.

[9]

S. McDowall, P. Stefanov and A. Tamasan, Stability of the gauge equivalent classes in inverse stationary transport in refractive media,, in, 559 (2011), 85. doi: 10.1090/conm/559/11074.

[10]

P. Stefanov and G. Uhlmann, Theromoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075011.

[11]

P. Stefanov and G. Uhlmann, Thermoacoustic tomography arising in brain imaging,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/4/045004.

[12]

L. Wang, ed., "Photoacoustic Imaging and Spectroscopy,", CRC Press, (2009).

[1]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[2]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[3]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[4]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[5]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[6]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[7]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[8]

Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113

[9]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[10]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[11]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[12]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[13]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[14]

Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410

[15]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[16]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[17]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[18]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[19]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[20]

Guillaume Bal, Ian Langmore, François Monard. Inverse transport with isotropic sources and angularly averaged measurements. Inverse Problems & Imaging, 2008, 2 (1) : 23-42. doi: 10.3934/ipi.2008.2.23

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]