# American Institute of Mathematical Sciences

February  2013, 7(1): 123-157. doi: 10.3934/ipi.2013.7.123

## A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid

 1 Université de Technologie de Compiègne, Laboratoire de Mathématiques Appliquées, EA 2222, Compiègne, France, France 2 Université de Pau et des pays de l'Adour, Laboratoire de Mathématiques Appliquées, UMR CNRS 5142, Pau, France 3 Université d'Oran, Département de Mathématiques, BP 1524, El-Menaouer, Oran, Algeria

Received  January 2012 Revised  October 2012 Published  February 2013

The aim of our work is to reconstruct an inclusion $\omega$ immersed in a fluid flowing in a larger bounded domain $\Omega$ via a boundary measurement on $\partial\Omega$. Here the fluid motion is assumed to be governed by the Stokes equations. We study the inverse problem of reconstructing $\omega$ thanks to the tools of shape optimization by minimizing a Kohn-Vogelius type cost functional. We first characterize the gradient of this cost functional in order to make a numerical resolution. Then, in order to study the stability of this problem, we give the expression of the shape Hessian. We show the compactness of the Riesz operator corresponding to this shape Hessian at a critical point which explains why the inverse problem is ill-posed. Therefore we need some regularization methods to solve numerically this problem. We illustrate those general results by some explicit calculus of the shape Hessian in some particular geometries. In particular, we solve explicitly the Stokes equations in a concentric annulus. Finally, we present some numerical simulations using a parametric method.
Citation: Fabien Caubet, Marc Dambrine, Djalil Kateb, Chahnaz Zakia Timimoun. A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Problems & Imaging, 2013, 7 (1) : 123-157. doi: 10.3934/ipi.2013.7.123
##### References:

show all references

##### References:
 [1] Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011 [2] Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069 [3] Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389 [4] Masataka Shibata. Asymptotic shape of a solution for the Plasma problem in higher dimensional spaces. Communications on Pure & Applied Analysis, 2003, 2 (2) : 259-275. doi: 10.3934/cpaa.2003.2.259 [5] Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Problems & Imaging, 2016, 10 (2) : 327-367. doi: 10.3934/ipi.2016003 [6] Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37 [7] Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1 [8] Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127 [9] Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023 [10] Pierre-Étienne Druet. Some mathematical problems related to the second order optimal shape of a crystallisation interface. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2443-2463. doi: 10.3934/dcds.2015.35.2443 [11] Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473 [12] Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389 [13] Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623 [14] A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213 [15] Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495 [16] Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633 [17] Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217 [18] Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008 [19] Georgi I. Kamberov. Recovering the shape of a surface from the mean curvature. Conference Publications, 1998, 1998 (Special) : 353-359. doi: 10.3934/proc.1998.1998.353 [20] Xavier Dubois de La Sablonière, Benjamin Mauroy, Yannick Privat. Shape minimization of the dissipated energy in dyadic trees. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 767-799. doi: 10.3934/dcdsb.2011.16.767

2018 Impact Factor: 1.469