February  2012, 6(1): 39-55. doi: 10.3934/ipi.2012.6.39

Identification of obstacles using only the scattered P-waves or the scattered S-waves

1. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens

2. 

RICAM, Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040, Linz, Austria

Received  October 2010 Revised  October 2011 Published  February 2012

In this work, we are concerned with the inverse scattering by obstacles for the linearized, homogeneous and isotropic elastic model. We study the uniqueness issue of detecting smooth obstacles from the knowledge of elastic far field patterns. We prove that the 'pressure' parts of the far field patterns over all directions of measurements corresponding to all 'pressure' (or all 'shear') incident plane waves are enough to guarantee uniqueness. We also establish that the shear parts of the far field patterns corresponding to all the 'shear' (or all 'pressure') incident waves are also enough. This shows that any of the two different types of waves is enough to detect obstacles at a fixed frequency. The proof is reconstructive and it can be used to set up an algorithm to detect the obstacle from the mentioned data.
Citation: Drossos Gintides, Mourad Sini. Identification of obstacles using only the scattered P-waves or the scattered S-waves. Inverse Problems & Imaging, 2012, 6 (1) : 39-55. doi: 10.3934/ipi.2012.6.39
References:
[1]

C. J. Alves and R. Kress, On the far-field operator in elastic obstacle scattering,, IMA Journal of Applied Mathematics, 67 (2002), 1. doi: 10.1093/imamat/67.1.1. Google Scholar

[2]

H. Ammari and H. Kang, "Polarization and Moment Tensors. With Applications to Inverse Problems and Effective Medium Theory,", Applied Mathematical Sciences, 162 (2007). Google Scholar

[3]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering,, Inverse Problems, 17 (2001), 1445. doi: 10.1088/0266-5611/17/5/314. Google Scholar

[4]

K. Baganas, B. B. Guzina, A. Charalambopoulos and D. George, A linear sampling method for the inverse transmission problem in near-field elastodynamics,, Inverse Problems, 22 (2006), 1835. doi: 10.1088/0266-5611/22/5/018. Google Scholar

[5]

M. Bonnet, "Boundary Integral Methods for Solids and Fluids,", Wiley & Sons, (1995). Google Scholar

[6]

A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity,, Inverse Problems, 18 (2002), 547. doi: 10.1088/0266-5611/18/3/303. Google Scholar

[7]

A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for non-absorbing penetrable elastic bodies,, Inverse Problems, 19 (2003), 549. doi: 10.1088/0266-5611/19/3/305. Google Scholar

[8]

D. Gintides and K. Kiriaki, The far-field equations in linear elasticity-An inversion scheme,, ZAMM Z. Angew. Math. Mech., 81 (2001), 305. doi: 10.1002/1521-4001(200105)81:5<305::AID-ZAMM305>3.0.CO;2-T. Google Scholar

[9]

B. B. Guzina and A. I. Madyarov, A linear sampling approach to inverse elastic scattering in piecewise-homogeneous domains,, Inverse Problems, 23 (2007), 1467. doi: 10.1088/0266-5611/23/4/007. Google Scholar

[10]

P. Hahner and G. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves,, Inverse Problems, 9 (1993), 525. doi: 10.1088/0266-5611/9/5/002. Google Scholar

[11]

N. Honda, R. Potthast, G. Nakamura and M. Sini, The no-response approach and its relation to non-iterative methods for the inverse scattering,, Ann. Mat. Pura Appl. (4), 187 (2008), 7. Google Scholar

[12]

M. Ikehata, Reconstruction of the shape of the inclusion by boundary measurements,, Comm. Partial Differential Equations, 23 (1998), 1459. Google Scholar

[13]

V. Isakov, On uniqueness in the inverse transmission scattering problem,, Commun. Part. Diff. Equ., 15 (1990), 1565. Google Scholar

[14]

A. Kirsch and R. Kress, Uniqueness in the inverse obstacle scattering problem,, Inverse Problems, 9 (1993), 285. doi: 10.1088/0266-5611/9/2/009. Google Scholar

[15]

V. D. Kupradze, "Potential Methods in the Theory of Elasticity,", Israel Program for Scientific Translations, (1965). Google Scholar

[16]

V. D. Kupradze, T. G. Gegelia, M. O. Basheleĭshvili and T. V. Burchuladze, "Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,", North-Holland Series in Applied Mathematics and Mechanics, 25 (1979). Google Scholar

[17]

J. J. Liu, G. Nakamura and M. Sini, Reconstruction of the shape and surface impedance from acoustic scattering data for an arbitrary cylinder,, SIAM J. Appl. Math., 67 (2007), 1124. doi: 10.1137/060654220. Google Scholar

[18]

G. Nakamura and M. Sini, Obstacle and boundary determination from scattering data,, SIAM J. Math. Anal., 39 (2007), 819. doi: 10.1137/060658667. Google Scholar

[19]

G. Nakamura, R. Potthast and M. Sini, Unification of the probe and singular sources methods for the inverse boundary value problem by the no-response test,, Comm. Partial Differential Equations, 31 (2006), 1505. Google Scholar

[20]

F. Nintcheu and B. B. Guzina, Elastic scatterer reconstruction via the adjoint sampling method,, SIAM J. Appl. Math., 67 (2007), 1330. doi: 10.1137/060653123. Google Scholar

[21]

R. Potthast, "Point Sources and Multipoles in Inverse Scattering Theory,", Chapman & Hall/CRC Research Notes in Mathematics, 427 (2001). Google Scholar

[22]

F. Simonetti, Localization of pointlike scatterers in solids with subwavelength resolution,, Applied Physics Letter, 89 (2006). doi: 10.1063/1.2338888. Google Scholar

[23]

V. A. Solonnikov, On Green's matrices for elliptic boundary value problems. I,, Trudy Mat. Inst. Steklov., 110 (1970), 107. Google Scholar

[24]

V. A. Solonnikov, The Green's matrices for elliptic boundary value problems. II,, Boundary Value Problems of Mathematical Physics, 7 (1971), 181. Google Scholar

show all references

References:
[1]

C. J. Alves and R. Kress, On the far-field operator in elastic obstacle scattering,, IMA Journal of Applied Mathematics, 67 (2002), 1. doi: 10.1093/imamat/67.1.1. Google Scholar

[2]

H. Ammari and H. Kang, "Polarization and Moment Tensors. With Applications to Inverse Problems and Effective Medium Theory,", Applied Mathematical Sciences, 162 (2007). Google Scholar

[3]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering,, Inverse Problems, 17 (2001), 1445. doi: 10.1088/0266-5611/17/5/314. Google Scholar

[4]

K. Baganas, B. B. Guzina, A. Charalambopoulos and D. George, A linear sampling method for the inverse transmission problem in near-field elastodynamics,, Inverse Problems, 22 (2006), 1835. doi: 10.1088/0266-5611/22/5/018. Google Scholar

[5]

M. Bonnet, "Boundary Integral Methods for Solids and Fluids,", Wiley & Sons, (1995). Google Scholar

[6]

A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity,, Inverse Problems, 18 (2002), 547. doi: 10.1088/0266-5611/18/3/303. Google Scholar

[7]

A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for non-absorbing penetrable elastic bodies,, Inverse Problems, 19 (2003), 549. doi: 10.1088/0266-5611/19/3/305. Google Scholar

[8]

D. Gintides and K. Kiriaki, The far-field equations in linear elasticity-An inversion scheme,, ZAMM Z. Angew. Math. Mech., 81 (2001), 305. doi: 10.1002/1521-4001(200105)81:5<305::AID-ZAMM305>3.0.CO;2-T. Google Scholar

[9]

B. B. Guzina and A. I. Madyarov, A linear sampling approach to inverse elastic scattering in piecewise-homogeneous domains,, Inverse Problems, 23 (2007), 1467. doi: 10.1088/0266-5611/23/4/007. Google Scholar

[10]

P. Hahner and G. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves,, Inverse Problems, 9 (1993), 525. doi: 10.1088/0266-5611/9/5/002. Google Scholar

[11]

N. Honda, R. Potthast, G. Nakamura and M. Sini, The no-response approach and its relation to non-iterative methods for the inverse scattering,, Ann. Mat. Pura Appl. (4), 187 (2008), 7. Google Scholar

[12]

M. Ikehata, Reconstruction of the shape of the inclusion by boundary measurements,, Comm. Partial Differential Equations, 23 (1998), 1459. Google Scholar

[13]

V. Isakov, On uniqueness in the inverse transmission scattering problem,, Commun. Part. Diff. Equ., 15 (1990), 1565. Google Scholar

[14]

A. Kirsch and R. Kress, Uniqueness in the inverse obstacle scattering problem,, Inverse Problems, 9 (1993), 285. doi: 10.1088/0266-5611/9/2/009. Google Scholar

[15]

V. D. Kupradze, "Potential Methods in the Theory of Elasticity,", Israel Program for Scientific Translations, (1965). Google Scholar

[16]

V. D. Kupradze, T. G. Gegelia, M. O. Basheleĭshvili and T. V. Burchuladze, "Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,", North-Holland Series in Applied Mathematics and Mechanics, 25 (1979). Google Scholar

[17]

J. J. Liu, G. Nakamura and M. Sini, Reconstruction of the shape and surface impedance from acoustic scattering data for an arbitrary cylinder,, SIAM J. Appl. Math., 67 (2007), 1124. doi: 10.1137/060654220. Google Scholar

[18]

G. Nakamura and M. Sini, Obstacle and boundary determination from scattering data,, SIAM J. Math. Anal., 39 (2007), 819. doi: 10.1137/060658667. Google Scholar

[19]

G. Nakamura, R. Potthast and M. Sini, Unification of the probe and singular sources methods for the inverse boundary value problem by the no-response test,, Comm. Partial Differential Equations, 31 (2006), 1505. Google Scholar

[20]

F. Nintcheu and B. B. Guzina, Elastic scatterer reconstruction via the adjoint sampling method,, SIAM J. Appl. Math., 67 (2007), 1330. doi: 10.1137/060653123. Google Scholar

[21]

R. Potthast, "Point Sources and Multipoles in Inverse Scattering Theory,", Chapman & Hall/CRC Research Notes in Mathematics, 427 (2001). Google Scholar

[22]

F. Simonetti, Localization of pointlike scatterers in solids with subwavelength resolution,, Applied Physics Letter, 89 (2006). doi: 10.1063/1.2338888. Google Scholar

[23]

V. A. Solonnikov, On Green's matrices for elliptic boundary value problems. I,, Trudy Mat. Inst. Steklov., 110 (1970), 107. Google Scholar

[24]

V. A. Solonnikov, The Green's matrices for elliptic boundary value problems. II,, Boundary Value Problems of Mathematical Physics, 7 (1971), 181. Google Scholar

[1]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[2]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[3]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[4]

Mikko Orispää, Markku Lehtinen. Fortran linear inverse problem solver. Inverse Problems & Imaging, 2010, 4 (3) : 485-503. doi: 10.3934/ipi.2010.4.485

[5]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[6]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[7]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[8]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[9]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[10]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[11]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[12]

Daniele Boffi, Franco Brezzi, Michel Fortin. Reduced symmetry elements in linear elasticity. Communications on Pure & Applied Analysis, 2009, 8 (1) : 95-121. doi: 10.3934/cpaa.2009.8.95

[13]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[14]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[15]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[16]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[17]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[18]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[19]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[20]

Bernd Schmidt. On the derivation of linear elasticity from atomistic models. Networks & Heterogeneous Media, 2009, 4 (4) : 789-812. doi: 10.3934/nhm.2009.4.789

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]