May  2012, 6(2): 321-355. doi: 10.3934/ipi.2012.6.321

Reconstruction of the singularities of a potential from backscattering data in 2D and 3D

1. 

Department of Mathematics and Statistics, University of Helsinki, FI-00014 Helsinki, Finland

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid

Received  June 2011 Revised  December 2011 Published  May 2012

We prove that the singularities of a potential in two and three dimensional Schrödinger equation are the same as those of the Born approximation (Diffraction Tomography), obtained from backscattering inverse data, with an accuracy of $1/2^-$ derivative in the scale of $L^2$-based Sobolev spaces. This improves previous results, see [30] and [20], removing several constrains on the a priori regularity of the potential. The improvement is based on the study of the smoothing properties of the quartic term in the Neumann-Born expansion of the scattering amplitude in 3D, together with a Leibniz formula for multiple scattering valid in any dimension.
Citation: Juan Manuel Reyes, Alberto Ruiz. Reconstruction of the singularities of a potential from backscattering data in 2D and 3D. Inverse Problems & Imaging, 2012, 6 (2) : 321-355. doi: 10.3934/ipi.2012.6.321
References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Sc. Norm. Super. Pisa (4), II (1975), 151. Google Scholar

[2]

J. A. Barceló, D. Faraco, A. Ruiz and A. Vargas, Reconstruction of singularities from full scattering data by new estimates of bilinear Fourier multipliers,, Math. Ann., 346 (2010), 505. doi: 10.1007/s00208-009-0398-5. Google Scholar

[3]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a casual generalized Radon transform,, J. Math. Phys., 26 (1985), 99. doi: 10.1063/1.526755. Google Scholar

[4]

I. Beltita and A. Mellin, Analysis of the quadratic term in the backscattering transform,, Math. Scand., 105 (2009), 218. Google Scholar

[5]

I. Beltita and A. Mellin, Local smoothing for the backscattering transform,, Comm. Partial Differential Equations, 34 (2009), 233. doi: 10.1080/03605300902812384. Google Scholar

[6]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,'', John Wiley & Sons, (1983). Google Scholar

[7]

G. Eskin and J. Ralston, The inverse backscattering problem in 3 dimension,, Comm. Math. Phys., 124 (1989), 169. doi: 10.1007/BF01219194. Google Scholar

[8]

G. Eskin and J. Ralston, Inverse backscattering in two dimensions,, Comm. Math. Phys., 138 (1991), 451. doi: 10.1007/BF02102037. Google Scholar

[9]

G. Eskin and J. Ralston, Inverse backscattering,, J. Anal. Math., 58 (1992), 177. doi: 10.1007/BF02790363. Google Scholar

[10]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'', Pitman Boston, (1985). Google Scholar

[11]

A. Greenleaf and G. Uhlmann, Recovery of singularities of a potential from singularities of the scattering data,, Comm. Math. Phys., 157 (1993), 549. doi: 10.1007/BF02096882. Google Scholar

[12]

P. Hajlasz, Sobolev spaces on an arbitrary metric space,, Potential Anal., 5 (1996), 403. Google Scholar

[13]

C. E. Kenig, A. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficients differential operators,, Duke Math. J., 55 (1987), 329. doi: 10.1215/S0012-7094-87-05518-9. Google Scholar

[14]

R. Lagergren, "Backscattering in Three Dimensions,'', Ph.D thesis, (2001). Google Scholar

[15]

R. Lagergren, The back-scattering problem in three dimensions,, J. Pseudo-Differ. Oper. Appl., 2 (2011), 1. doi: 10.1007/s11868-010-0021-2. Google Scholar

[16]

A. Melin, Some transforms in potential scattering in odd dimension,, in, 348 (2004), 103. Google Scholar

[17]

R. Melrose and G. Uhlmann, Generalized backscattering and the Lax-Phillips transform,, Serdica Math. J., 34 (2008), 355. Google Scholar

[18]

A. Nachman, Inverse scattering at fixed energy,, in, (1992), 434. Google Scholar

[19]

R. G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta\Psi+(v(x)-Eu(x))\Psi=0$,, Funct. Anal. Appl., 22 (1988), 263. doi: 10.1007/BF01077418. Google Scholar

[20]

P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions,, Comm. Partial Differential Equations, 26 (2001), 697. doi: 10.1081/PDE-100001768. Google Scholar

[21]

L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential,, SIAM J. Math. Anal., 29 (1998), 697. doi: 10.1137/S0036141096305796. Google Scholar

[22]

L. Päivärinta, V. Serov and E. Somersalo, Reconstruction of singularities of a scattering potential in two dimensions,, Adv. in Appl. Math., 15 (1994), 97. doi: 10.1006/aama.1994.1003. Google Scholar

[23]

L. Päivärinta and E. Somersalo, Inversion of discontinuities for the Schrödinger equation in three dimensions,, SIAM J. Math. Anal., 22 (1991), 480. doi: 10.1137/0522031. Google Scholar

[24]

R. T. Prosser, Formal solutions of inverse scattering problems,, J. Math. Phys., 23 (1982), 2127. doi: 10.1063/1.525267. Google Scholar

[25]

A. G. Ramm, Recovery of a potential from fixed-energy scattering data,, Inverse Problems, 4 (1988), 877. Google Scholar

[26]

J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D,, Inverse Problems, 23 (2007), 625. doi: 10.1088/0266-5611/23/2/010. Google Scholar

[27]

J. M. Reyes, "Problema Inverso de Scattering para la Ecuación de Schrödinger: Reconstrucción Parcial del Potencial a Partir de Datos de Retrodispersión en 2D y 3D,'', (Spanish), (2007). Google Scholar

[28]

A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data,, Comm. Partial Differential Equations, 26 (2001), 1721. Google Scholar

[29]

A. Ruiz, "Harmonic Analysis and Inverse Problems,'', Notes of the 4th Summer School in Inverse Problems, (2002). Google Scholar

[30]

A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Differential Equations, 30 (2005), 67. doi: 10.1081/PDE-200044450. Google Scholar

[31]

P. Stefanov, Generic uniqueness for two inverse problems in potential scattering,, Comm. Partial Differential Equations, 17 (1992), 55. doi: 10.1080/03605309208820834. Google Scholar

[32]

Z. Sun and G. Uhlmann, Generic uniqueness for an inverse boundary value problem,, Duke Math. J., 62 (1991), 131. doi: 10.1215/S0012-7094-91-06206-X. Google Scholar

[33]

G. Uhlmann, A time-dependent approach to the inverse backscattering problem,, Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 17 (2001), 703. Google Scholar

[34]

G. N. Watson, "The Theory of Bessel Functions,'', Cambridge University Press, (1948). Google Scholar

show all references

References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Sc. Norm. Super. Pisa (4), II (1975), 151. Google Scholar

[2]

J. A. Barceló, D. Faraco, A. Ruiz and A. Vargas, Reconstruction of singularities from full scattering data by new estimates of bilinear Fourier multipliers,, Math. Ann., 346 (2010), 505. doi: 10.1007/s00208-009-0398-5. Google Scholar

[3]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a casual generalized Radon transform,, J. Math. Phys., 26 (1985), 99. doi: 10.1063/1.526755. Google Scholar

[4]

I. Beltita and A. Mellin, Analysis of the quadratic term in the backscattering transform,, Math. Scand., 105 (2009), 218. Google Scholar

[5]

I. Beltita and A. Mellin, Local smoothing for the backscattering transform,, Comm. Partial Differential Equations, 34 (2009), 233. doi: 10.1080/03605300902812384. Google Scholar

[6]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,'', John Wiley & Sons, (1983). Google Scholar

[7]

G. Eskin and J. Ralston, The inverse backscattering problem in 3 dimension,, Comm. Math. Phys., 124 (1989), 169. doi: 10.1007/BF01219194. Google Scholar

[8]

G. Eskin and J. Ralston, Inverse backscattering in two dimensions,, Comm. Math. Phys., 138 (1991), 451. doi: 10.1007/BF02102037. Google Scholar

[9]

G. Eskin and J. Ralston, Inverse backscattering,, J. Anal. Math., 58 (1992), 177. doi: 10.1007/BF02790363. Google Scholar

[10]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'', Pitman Boston, (1985). Google Scholar

[11]

A. Greenleaf and G. Uhlmann, Recovery of singularities of a potential from singularities of the scattering data,, Comm. Math. Phys., 157 (1993), 549. doi: 10.1007/BF02096882. Google Scholar

[12]

P. Hajlasz, Sobolev spaces on an arbitrary metric space,, Potential Anal., 5 (1996), 403. Google Scholar

[13]

C. E. Kenig, A. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficients differential operators,, Duke Math. J., 55 (1987), 329. doi: 10.1215/S0012-7094-87-05518-9. Google Scholar

[14]

R. Lagergren, "Backscattering in Three Dimensions,'', Ph.D thesis, (2001). Google Scholar

[15]

R. Lagergren, The back-scattering problem in three dimensions,, J. Pseudo-Differ. Oper. Appl., 2 (2011), 1. doi: 10.1007/s11868-010-0021-2. Google Scholar

[16]

A. Melin, Some transforms in potential scattering in odd dimension,, in, 348 (2004), 103. Google Scholar

[17]

R. Melrose and G. Uhlmann, Generalized backscattering and the Lax-Phillips transform,, Serdica Math. J., 34 (2008), 355. Google Scholar

[18]

A. Nachman, Inverse scattering at fixed energy,, in, (1992), 434. Google Scholar

[19]

R. G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta\Psi+(v(x)-Eu(x))\Psi=0$,, Funct. Anal. Appl., 22 (1988), 263. doi: 10.1007/BF01077418. Google Scholar

[20]

P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions,, Comm. Partial Differential Equations, 26 (2001), 697. doi: 10.1081/PDE-100001768. Google Scholar

[21]

L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential,, SIAM J. Math. Anal., 29 (1998), 697. doi: 10.1137/S0036141096305796. Google Scholar

[22]

L. Päivärinta, V. Serov and E. Somersalo, Reconstruction of singularities of a scattering potential in two dimensions,, Adv. in Appl. Math., 15 (1994), 97. doi: 10.1006/aama.1994.1003. Google Scholar

[23]

L. Päivärinta and E. Somersalo, Inversion of discontinuities for the Schrödinger equation in three dimensions,, SIAM J. Math. Anal., 22 (1991), 480. doi: 10.1137/0522031. Google Scholar

[24]

R. T. Prosser, Formal solutions of inverse scattering problems,, J. Math. Phys., 23 (1982), 2127. doi: 10.1063/1.525267. Google Scholar

[25]

A. G. Ramm, Recovery of a potential from fixed-energy scattering data,, Inverse Problems, 4 (1988), 877. Google Scholar

[26]

J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D,, Inverse Problems, 23 (2007), 625. doi: 10.1088/0266-5611/23/2/010. Google Scholar

[27]

J. M. Reyes, "Problema Inverso de Scattering para la Ecuación de Schrödinger: Reconstrucción Parcial del Potencial a Partir de Datos de Retrodispersión en 2D y 3D,'', (Spanish), (2007). Google Scholar

[28]

A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data,, Comm. Partial Differential Equations, 26 (2001), 1721. Google Scholar

[29]

A. Ruiz, "Harmonic Analysis and Inverse Problems,'', Notes of the 4th Summer School in Inverse Problems, (2002). Google Scholar

[30]

A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Differential Equations, 30 (2005), 67. doi: 10.1081/PDE-200044450. Google Scholar

[31]

P. Stefanov, Generic uniqueness for two inverse problems in potential scattering,, Comm. Partial Differential Equations, 17 (1992), 55. doi: 10.1080/03605309208820834. Google Scholar

[32]

Z. Sun and G. Uhlmann, Generic uniqueness for an inverse boundary value problem,, Duke Math. J., 62 (1991), 131. doi: 10.1215/S0012-7094-91-06206-X. Google Scholar

[33]

G. Uhlmann, A time-dependent approach to the inverse backscattering problem,, Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 17 (2001), 703. Google Scholar

[34]

G. N. Watson, "The Theory of Bessel Functions,'', Cambridge University Press, (1948). Google Scholar

[1]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[2]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[3]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[4]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[5]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[6]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[7]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[8]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[9]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[10]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[11]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[12]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[13]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[14]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[15]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[16]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[17]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[18]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[19]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[20]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]