2012, 6(2): 315-320. doi: 10.3934/ipi.2012.6.315

Photo-acoustic inversion in convex domains

1. 

University of Münster, Department of Mathematics and Computer Science, Einsteinstrasse 72, 48159 Münster

Received  April 2011 Revised  April 2012 Published  May 2012

In photo-acoustics one has to reconstruct a function from its averages over spheres around points on the measurement surface. For special surfaces inversion formulas are known. In this paper we derive a formula for surfaces that bound smooth convex domains. It reconstructs the function modulo a smoothing integral operator. For special surfaces the integral operator vanishes, providing exact reconstruction.
Citation: Frank Natterer. Photo-acoustic inversion in convex domains. Inverse Problems & Imaging, 2012, 6 (2) : 315-320. doi: 10.3934/ipi.2012.6.315
References:
[1]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. An., 35 (2004), 1213.

[2]

L. Kunyansky, Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/2/025012.

[3]

F. Natterer, "The Mathematics of Computerized Tomography,", Wiley-Teubner 1986, 32 (1986).

[4]

F. Natterer, Inversion of the attenuated Radon transform,, Inverse Problems, 17 (2001), 113. doi: 10.1088/0266-5611/17/1/309.

[5]

V. Palamodov, "Reconstructive Integral Geometry,", Birkhäuser, (2004).

[6]

V. Palamodov, A uniform reconstruction formula in integral geometry,, Inverse Problems, 17 (2012).

[7]

E. T. Quinto, A. Rieder and T. Schuster, Local inversion of the sonar transform regularized by the approximate inverse,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/3/035006.

[8]

M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography,, Physical Review, E 71 (2005). doi: 10.1103/PhysRevE.71.016706.

show all references

References:
[1]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. An., 35 (2004), 1213.

[2]

L. Kunyansky, Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/2/025012.

[3]

F. Natterer, "The Mathematics of Computerized Tomography,", Wiley-Teubner 1986, 32 (1986).

[4]

F. Natterer, Inversion of the attenuated Radon transform,, Inverse Problems, 17 (2001), 113. doi: 10.1088/0266-5611/17/1/309.

[5]

V. Palamodov, "Reconstructive Integral Geometry,", Birkhäuser, (2004).

[6]

V. Palamodov, A uniform reconstruction formula in integral geometry,, Inverse Problems, 17 (2012).

[7]

E. T. Quinto, A. Rieder and T. Schuster, Local inversion of the sonar transform regularized by the approximate inverse,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/3/035006.

[8]

M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography,, Physical Review, E 71 (2005). doi: 10.1103/PhysRevE.71.016706.

[1]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[2]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[3]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[4]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems & Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[5]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[6]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[7]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[8]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[9]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[10]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[11]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[12]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[13]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[14]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[15]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[16]

Ya-zheng Dang, Jie Sun, Su Zhang. Double projection algorithms for solving the split feasibility problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2018135

[17]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems & Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

[18]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[19]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[20]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (39)

Other articles
by authors

[Back to Top]