2012, 6(2): 289-313. doi: 10.3934/ipi.2012.6.289

Inverse diffusion problems with redundant internal information

1. 

Department of Applied Physics and Applied Mathematics, Columbia University, New York NY, 10027

Received  June 2011 Published  May 2012

This paper concerns the reconstruction of a scalar diffusion coefficient $\sigma(x)$ from redundant functionals of the form $H_i(x)=\sigma^{2\alpha}(x)|\nabla u_i|^2(x)$ where $\alpha\in\mathbb{R}$ and $u_i$ is a solution of the elliptic problem $\nabla\cdot \sigma \nabla u_i=0$ for $1\leq i\leq I$. The case $\alpha=\frac12$ is used to model measurements obtained from modulating a domain of interest by ultrasound and finds applications in ultrasound modulated electrical impedance tomography (UMEIT), ultrasound modulated optical tomography (UMOT) as well as impedance acoustic computerized tomography (ImpACT). The case $\alpha=1$ finds applications in Magnetic Resonance Electrical Impedance Tomography (MREIT).
    We present two explicit reconstruction procedures of $\sigma$ for appropriate choices of $I$ and of traces of $u_i$ at the boundary of a domain of interest. The first procedure involves the solution of an over-determined system of ordinary differential equations and generalizes to the multi-dimensional case and to (almost) arbitrary values of $\alpha$ the results obtained in two and three dimensions in [10] and [5], respectively, in the case $\alpha=\frac12$. The second procedure consists of solving a system of linear elliptic equations, which we can prove admits a unique solution in specific situations.
Citation: François Monard, Guillaume Bal. Inverse diffusion problems with redundant internal information. Inverse Problems & Imaging, 2012, 6 (2) : 289-313. doi: 10.3934/ipi.2012.6.289
References:
[1]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation,, SIAM J. Appl. Math., 68 (2008), 1557. doi: 10.1137/070686408.

[2]

G. Alessandrini and V. Nesi, Univalent $e^\sigma$-harmonic mappings,, Arch. Rat. Mech. Anal., 158 (2001), 155. doi: 10.1007/PL00004242.

[3]

G. Bal, Hybrid inverse problems and internal functionals (review paper),, in, (2012).

[4]

_____, Cauchy problem and Ultrasound modulated EIT,, submitted., ().

[5]

G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities,, Inverse Probl. Imaging, (2012).

[6]

G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/5/055007.

[7]

G. Bal and G. Uhlmann, Inverse diffusion theory for photoacoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085010.

[8]

A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65.

[9]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order,'', Third edition, (1999).

[10]

Y. Capdeboscq, J. Fehrenbach, F. de Gournay and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements,, SIAM Journal on Imaging Sciences, 2 (2009), 1003.

[11]

L. C. Evans, "Partial Differential Equations,'', Graduate Studies in Mathematics, (1998).

[12]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Applied Math., 69 (2009), 565. doi: 10.1137/080715123.

[13]

S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography,, SIAM J. Math. Anal., 34 (2002), 511. doi: 10.1137/S0036141001391354.

[14]

P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography,, Inverse Problems, 27 (2011).

[15]

J. M. Lee, "Riemannian Manifolds. An Introduction to Curvature,'', Graduate Texts in Mathematics, (1997).

[16]

F. Monard, "Taming Unstable Inverse Problems. Mathematical Routes Toward High-Resolution Medical Imaging Modalities,'', Ph.D. thesis, (2012).

[17]

A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data,, Inverse Problems, 23 (2007), 2551. doi: 10.1088/0266-5611/23/6/017.

[18]

_____, Recovering the conductivity from a single measurement of interior data,, Inverse Problems, 25 (2009).

[19]

_____, Current density impedance imaging,, Contemporary Mathematics, (2012).

[20]

O. Scherzer, "Handbook of Mathematical Methods in Imaging,'', Springer Verlag, (2011).

[21]

M. Spivak, "A Comprehensive Introduction to Differential Geometry, Vol. 2,'', Second edition, (1990).

[22]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291.

[23]

M. Taylor, "Partial Differential Equations I, Basic Theory,'', Springer, (1996).

show all references

References:
[1]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation,, SIAM J. Appl. Math., 68 (2008), 1557. doi: 10.1137/070686408.

[2]

G. Alessandrini and V. Nesi, Univalent $e^\sigma$-harmonic mappings,, Arch. Rat. Mech. Anal., 158 (2001), 155. doi: 10.1007/PL00004242.

[3]

G. Bal, Hybrid inverse problems and internal functionals (review paper),, in, (2012).

[4]

_____, Cauchy problem and Ultrasound modulated EIT,, submitted., ().

[5]

G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities,, Inverse Probl. Imaging, (2012).

[6]

G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/5/055007.

[7]

G. Bal and G. Uhlmann, Inverse diffusion theory for photoacoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085010.

[8]

A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65.

[9]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order,'', Third edition, (1999).

[10]

Y. Capdeboscq, J. Fehrenbach, F. de Gournay and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements,, SIAM Journal on Imaging Sciences, 2 (2009), 1003.

[11]

L. C. Evans, "Partial Differential Equations,'', Graduate Studies in Mathematics, (1998).

[12]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Applied Math., 69 (2009), 565. doi: 10.1137/080715123.

[13]

S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography,, SIAM J. Math. Anal., 34 (2002), 511. doi: 10.1137/S0036141001391354.

[14]

P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography,, Inverse Problems, 27 (2011).

[15]

J. M. Lee, "Riemannian Manifolds. An Introduction to Curvature,'', Graduate Texts in Mathematics, (1997).

[16]

F. Monard, "Taming Unstable Inverse Problems. Mathematical Routes Toward High-Resolution Medical Imaging Modalities,'', Ph.D. thesis, (2012).

[17]

A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data,, Inverse Problems, 23 (2007), 2551. doi: 10.1088/0266-5611/23/6/017.

[18]

_____, Recovering the conductivity from a single measurement of interior data,, Inverse Problems, 25 (2009).

[19]

_____, Current density impedance imaging,, Contemporary Mathematics, (2012).

[20]

O. Scherzer, "Handbook of Mathematical Methods in Imaging,'', Springer Verlag, (2011).

[21]

M. Spivak, "A Comprehensive Introduction to Differential Geometry, Vol. 2,'', Second edition, (1990).

[22]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291.

[23]

M. Taylor, "Partial Differential Equations I, Basic Theory,'', Springer, (1996).

[1]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[2]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[3]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[4]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[5]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[6]

Dung Le. Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 877-893. doi: 10.3934/dcdsb.2017044

[7]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[8]

Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems & Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397

[9]

Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021

[10]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[11]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[12]

Xianjin Chen, Jianxin Zhou. A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Conference Publications, 2009, 2009 (Special) : 151-160. doi: 10.3934/proc.2009.2009.151

[13]

Kim Knudsen, Jennifer L. Mueller. The born approximation and Calderón's method for reconstruction of conductivities in 3-D. Conference Publications, 2011, 2011 (Special) : 844-853. doi: 10.3934/proc.2011.2011.844

[14]

Jie Chen, Maarten de Hoop. The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter. Inverse Problems & Imaging, 2016, 10 (3) : 641-658. doi: 10.3934/ipi.2016015

[15]

Kim Knudsen, Matti Lassas, Jennifer L. Mueller, Samuli Siltanen. Regularized D-bar method for the inverse conductivity problem. Inverse Problems & Imaging, 2009, 3 (4) : 599-624. doi: 10.3934/ipi.2009.3.599

[16]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[17]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[18]

Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673

[19]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

[20]

Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]