2012, 6(2): 267-287. doi: 10.3934/ipi.2012.6.267

Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns

1. 

Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu

Received  June 2009 Revised  January 2012 Published  May 2012

In practical statistical inverse problems, one often considers only finite-dimensional unknowns and investigates numerically their posterior probabilities. As many unknowns are function-valued, it is of interest to know whether the estimated probabilities converge when the finite-dimensional approximations of the unknown are refined. In this work, the generalized Bayes formula is shown to be a powerful tool in the convergence studies. With the help of the generalized Bayes formula, the question of convergence of the posterior distributions is returned to the convergence of the finite-dimensional (or any other) approximations of the unknown. The approach allows many prior distributions while the restrictions are mainly for the noise model and the direct theory. Three modes of convergence of posterior distributions are considered -- weak convergence, setwise convergence and convergence in variation. The convergence of conditional mean estimates is also studied.
Citation: Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267
References:
[1]

B. D'Ambrogi, S. Mäenpää and M. Markkanen, Discretization independent retrieval of atmospheric ozone profile,, Geophysica, 35 (1999), 87.

[2]

P. Berti, L. Pratelli and P. Rigo, Almost sure weak convergence of random probability measures,, Stochastics, 78 (2006), 91. doi: 10.1080/17442500600745359.

[3]

P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968).

[4]

V. I. Bogachev, "Gaussian Measures,", American Mathematical Society, (1998).

[5]

V. I. Bogachev, "Measure Theory. Vol. I, II,", Springer-Verlag, (2007).

[6]

S. L. Cotter, M. Dashti, J. C. Robinson and A. M. Stuart, Bayesian inverse problems for functions and applications to fluid mechanics,, Inverse Problems, 25 (2009), 115008. doi: 10.1088/0266-5611/25/11/115008.

[7]

S. L. Cotter, M. Dashti and A. M. Stuart, Approximations of Bayesian inverse problems for PDEs,, SIAM J. Numer. Anal., 48 (2010), 322. doi: 10.1137/090770734.

[8]

I. Crimaldi and L. Pratelli, Convergence results for conditional expectations,, Bernoulli, 11 (2005), 737. doi: 10.3150/bj/1126126767.

[9]

I. Crimaldi and L. Pratelli, Two inequalities for conditional expectations and convergence results for filters,, Statist. Probab. Lett., 74 (2005), 151. doi: 10.1016/j.spl.2005.04.039.

[10]

R. M. Dudley, "Real Analysis and Probability,", Cambridge University Press, (2002).

[11]

B. G. Fitzpatrick, Bayesian analysis in inverse problems,, Inverse Problems, 7 (1991), 675.

[12]

V. P. Fonf, W. B. Johnson, G. Pisier and D. Preiss, Stochastic approximation properties in Banach spaces,, Studia Math., 159 (2003), 103. doi: 10.4064/sm159-1-5.

[13]

E. Goggin, Convergence in distribution of conditional expectations,, Ann. Probab., 22 (1994), 1097. doi: 10.1214/aop/1176988743.

[14]

P. Gänssler and J. Pfanzagl, Convergence of conditional expectations,, Ann. Math. Statist., 42 (1971), 315. doi: 10.1214/aoms/1177693514.

[15]

J. M. Hammersley, Monte Carlo methods for solving multivariable problems,, Ann. New York Acad. Sci., 86 (1960), 844. doi: 10.1111/j.1749-6632.1960.tb42846.x.

[16]

T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems,, Inverse Probl. Imaging, 3 (2009), 567.

[17]

T. Helin and M. Lassas, Hierarchical models in statistical inverse problems and the Mumford-Shah functional,, Inverse Problems, 27 (2011), 015008. doi: 10.1088/0266-5611/27/1/015008.

[18]

W. Herer, Stochastic bases in Fréchet spaces,, Demonstratio Math., 14 (1981), 719.

[19]

G. Kallianpur, "Stochastic Filtering Theory,", Springer-Verlag, (1980).

[20]

G. Kallianpur and C. Striebel, Estimation of stochastic systems: Arbitrary system process with additive white noise observation errors,, Ann. Math. Statist., 39 (1968), 785.

[21]

K. Krikkeberg, Convergence of conditional expectation operators,, Theory Probab. Appl., 9 (1964), 538.

[22]

J. Kuelbs, Some results of probability measures on linear topological vector spaces with an application to Strassen's log log law,, J. Funct. Anal., 14 (1973), 28. doi: 10.1016/0022-1236(73)90028-1.

[23]

D. Landers and L. Rogge, A generalized Martingale theorem,, Z. Wahrsch. Verw. Gebiete, 23 (1972), 289. doi: 10.1007/BF00532514.

[24]

S. Lasanen, "Discretizations of Generalized Random Variables with Applications to Inverse Problems," Dissertation,, Ann. Acad. Sci. Fenn. Math. Diss., (2002).

[25]

S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions,, Inverse Probl. and Imaging, 6 (2012), 215.

[26]

S. Lasanen and L. Roininen, Statistical inversion with Green's priors,, in, (2005), 11.

[27]

M. Lassas, E. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors,, Inverse Probl. Imaging, 3 (2009), 87.

[28]

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?,, Inverse Problems, 20 (2004), 1537. doi: 10.1088/0266-5611/20/5/013.

[29]

H. Niederreiter, "Random Number Generation and Quasi-Monte Carlo Methods,", SIAM, (1992).

[30]

B. Oeksendal, "Stochastic Differential Equations. An Introduction with Applications,", Springer-Verlag, (2003).

[31]

Y. Okazaki, Stochastic basis in Fréchet space,, Math. Ann., 274 (1986), 379. doi: 10.1007/BF01457222.

[32]

P. Piiroinen, "Statistical Measurements, Experiments and Applications," Dissertation,, Ann. Acad. Sci. Fenn. Math. Diss., (2005).

[33]

H. Sato, An ergodic measure on a locally convex topological vector space,, J. Funct. Anal., 43 (1981), 149. doi: 10.1016/0022-1236(81)90026-4.

[34]

A. M. Stuart, Inverse problems: A Bayesian perspective,, Acta Numerica, 19 (2010), 451. doi: 10.1017/S0962492910000061.

[35]

N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, "Probability Distributions on Banach Spaces,", Reidel Publishing Co., (1987).

show all references

References:
[1]

B. D'Ambrogi, S. Mäenpää and M. Markkanen, Discretization independent retrieval of atmospheric ozone profile,, Geophysica, 35 (1999), 87.

[2]

P. Berti, L. Pratelli and P. Rigo, Almost sure weak convergence of random probability measures,, Stochastics, 78 (2006), 91. doi: 10.1080/17442500600745359.

[3]

P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968).

[4]

V. I. Bogachev, "Gaussian Measures,", American Mathematical Society, (1998).

[5]

V. I. Bogachev, "Measure Theory. Vol. I, II,", Springer-Verlag, (2007).

[6]

S. L. Cotter, M. Dashti, J. C. Robinson and A. M. Stuart, Bayesian inverse problems for functions and applications to fluid mechanics,, Inverse Problems, 25 (2009), 115008. doi: 10.1088/0266-5611/25/11/115008.

[7]

S. L. Cotter, M. Dashti and A. M. Stuart, Approximations of Bayesian inverse problems for PDEs,, SIAM J. Numer. Anal., 48 (2010), 322. doi: 10.1137/090770734.

[8]

I. Crimaldi and L. Pratelli, Convergence results for conditional expectations,, Bernoulli, 11 (2005), 737. doi: 10.3150/bj/1126126767.

[9]

I. Crimaldi and L. Pratelli, Two inequalities for conditional expectations and convergence results for filters,, Statist. Probab. Lett., 74 (2005), 151. doi: 10.1016/j.spl.2005.04.039.

[10]

R. M. Dudley, "Real Analysis and Probability,", Cambridge University Press, (2002).

[11]

B. G. Fitzpatrick, Bayesian analysis in inverse problems,, Inverse Problems, 7 (1991), 675.

[12]

V. P. Fonf, W. B. Johnson, G. Pisier and D. Preiss, Stochastic approximation properties in Banach spaces,, Studia Math., 159 (2003), 103. doi: 10.4064/sm159-1-5.

[13]

E. Goggin, Convergence in distribution of conditional expectations,, Ann. Probab., 22 (1994), 1097. doi: 10.1214/aop/1176988743.

[14]

P. Gänssler and J. Pfanzagl, Convergence of conditional expectations,, Ann. Math. Statist., 42 (1971), 315. doi: 10.1214/aoms/1177693514.

[15]

J. M. Hammersley, Monte Carlo methods for solving multivariable problems,, Ann. New York Acad. Sci., 86 (1960), 844. doi: 10.1111/j.1749-6632.1960.tb42846.x.

[16]

T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems,, Inverse Probl. Imaging, 3 (2009), 567.

[17]

T. Helin and M. Lassas, Hierarchical models in statistical inverse problems and the Mumford-Shah functional,, Inverse Problems, 27 (2011), 015008. doi: 10.1088/0266-5611/27/1/015008.

[18]

W. Herer, Stochastic bases in Fréchet spaces,, Demonstratio Math., 14 (1981), 719.

[19]

G. Kallianpur, "Stochastic Filtering Theory,", Springer-Verlag, (1980).

[20]

G. Kallianpur and C. Striebel, Estimation of stochastic systems: Arbitrary system process with additive white noise observation errors,, Ann. Math. Statist., 39 (1968), 785.

[21]

K. Krikkeberg, Convergence of conditional expectation operators,, Theory Probab. Appl., 9 (1964), 538.

[22]

J. Kuelbs, Some results of probability measures on linear topological vector spaces with an application to Strassen's log log law,, J. Funct. Anal., 14 (1973), 28. doi: 10.1016/0022-1236(73)90028-1.

[23]

D. Landers and L. Rogge, A generalized Martingale theorem,, Z. Wahrsch. Verw. Gebiete, 23 (1972), 289. doi: 10.1007/BF00532514.

[24]

S. Lasanen, "Discretizations of Generalized Random Variables with Applications to Inverse Problems," Dissertation,, Ann. Acad. Sci. Fenn. Math. Diss., (2002).

[25]

S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions,, Inverse Probl. and Imaging, 6 (2012), 215.

[26]

S. Lasanen and L. Roininen, Statistical inversion with Green's priors,, in, (2005), 11.

[27]

M. Lassas, E. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors,, Inverse Probl. Imaging, 3 (2009), 87.

[28]

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?,, Inverse Problems, 20 (2004), 1537. doi: 10.1088/0266-5611/20/5/013.

[29]

H. Niederreiter, "Random Number Generation and Quasi-Monte Carlo Methods,", SIAM, (1992).

[30]

B. Oeksendal, "Stochastic Differential Equations. An Introduction with Applications,", Springer-Verlag, (2003).

[31]

Y. Okazaki, Stochastic basis in Fréchet space,, Math. Ann., 274 (1986), 379. doi: 10.1007/BF01457222.

[32]

P. Piiroinen, "Statistical Measurements, Experiments and Applications," Dissertation,, Ann. Acad. Sci. Fenn. Math. Diss., (2005).

[33]

H. Sato, An ergodic measure on a locally convex topological vector space,, J. Funct. Anal., 43 (1981), 149. doi: 10.1016/0022-1236(81)90026-4.

[34]

A. M. Stuart, Inverse problems: A Bayesian perspective,, Acta Numerica, 19 (2010), 451. doi: 10.1017/S0962492910000061.

[35]

N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, "Probability Distributions on Banach Spaces,", Reidel Publishing Co., (1987).

[1]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[2]

Azmy S. Ackleh, Ben G. Fitzpatrick, Horst R. Thieme. Rate distributions and survival of the fittest: a formulation on the space of measures. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 917-928. doi: 10.3934/dcdsb.2005.5.917

[3]

Eugen Mihailescu. Equilibrium measures, prehistories distributions and fractal dimensions for endomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2485-2502. doi: 10.3934/dcds.2012.32.2485

[4]

Kui Lin, Shuai Lu, Peter Mathé. Oracle-type posterior contraction rates in Bayesian inverse problems. Inverse Problems & Imaging, 2015, 9 (3) : 895-915. doi: 10.3934/ipi.2015.9.895

[5]

Todd Young. Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 359-378. doi: 10.3934/dcds.2003.9.359

[6]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[7]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[8]

Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems & Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697

[9]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[10]

Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems & Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028

[11]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[12]

Dawan Mustafa, Bernt Wennberg. Chaotic distributions for relativistic particles. Kinetic & Related Models, 2016, 9 (4) : 749-766. doi: 10.3934/krm.2016014

[13]

Axel Heim, Vladimir Sidorenko, Uli Sorger. Computation of distributions and their moments in the trellis. Advances in Mathematics of Communications, 2008, 2 (4) : 373-391. doi: 10.3934/amc.2008.2.373

[14]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[15]

Jean-Luc Akian, Radjesvarane Alexandre, Salma Bougacha. A Gaussian beam approach for computing Wigner measures in convex domains. Kinetic & Related Models, 2011, 4 (3) : 589-631. doi: 10.3934/krm.2011.4.589

[16]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[17]

Johnathan M. Bardsley. Gaussian Markov random field priors for inverse problems. Inverse Problems & Imaging, 2013, 7 (2) : 397-416. doi: 10.3934/ipi.2013.7.397

[18]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[19]

H.T. Banks, Jimena L. Davis. Quantifying uncertainty in the estimation of probability distributions. Mathematical Biosciences & Engineering, 2008, 5 (4) : 647-667. doi: 10.3934/mbe.2008.5.647

[20]

BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]