February  2012, 6(1): 25-38. doi: 10.3934/ipi.2012.6.25

On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach

1. 

Faculty of Applied Mathematics and Computer Science, Ivan Franko National University of Lviv, 79000 Lviv, Ukraine

2. 

School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT

Received  January 2011 Revised  December 2011 Published  February 2012

We investigate the problem of determining the stationary temperature field on an inclusion from given Cauchy data on an accessible exterior boundary. On this accessible part the temperature (or the heat flux) is known, and, additionally, on a portion of this exterior boundary the heat flux (or temperature) is also given. We propose a direct boundary integral approach in combination with Tikhonov regularization for the stable determination of the temperature and flux on the inclusion. To determine these quantities on the inclusion, boundary integral equations are derived using Green's functions, and properties of these equations are shown in an $L^2$-setting. An effective way of discretizing these boundary integral equations based on the Nyström method and trigonometric approximations, is outlined. Numerical examples are included, both with exact and noisy data, showing that accurate approximations can be obtained with small computational effort, and the accuracy is increasing with the length of the portion of the boundary where the additionally data is given.
Citation: Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25
References:
[1]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations,, Amer. J. Math., 80 (1958), 16. Google Scholar

[2]

F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data,, Inverse Probl. Imaging, 1 (2007), 229. doi: 10.3934/ipi.2007.1.229. Google Scholar

[3]

F. Cakoni, R. Kress and C. Schuft, Integral equations for shape and impedance reconstruction in corrosion detection,, Inverse Problems, 26 (2010). Google Scholar

[4]

H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation,, Inverse Problems, 25 (2009). Google Scholar

[5]

T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes, (French), Ark. Mat., 26 (1939). Google Scholar

[6]

R. Chapko and B. T. Johansson, An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite domains,, Inverse Probl. Imaging, 2 (2008), 317. Google Scholar

[7]

R. Chapko and R. Kress, A hybrid method for inverse boundary value problems in potential theory,, J. Inverse Ill-Posed Probl., 13 (2005), 27. doi: 10.1515/1569394053583711. Google Scholar

[8]

J. Cheng, Y. C. Hon, T. Wei and M. Yamamoto, Numerical computation of a Cauchy problem for Laplace's equation,, ZAMM Z. Angew. Math. Mech., 81 (2001), 665. doi: 10.1002/1521-4001(200110)81:10<665::AID-ZAMM665>3.0.CO;2-V. Google Scholar

[9]

X. Escriva, T. N. Baranger and N. H. Tlatli, Leak identification in porous media by solving the Cauchy problem,, C. R. Mecanique, 335 (2007), 401. doi: 10.1016/j.crme.2007.04.001. Google Scholar

[10]

Dinh Nho Hào, "Methods for Inverse Heat Conduction Problems,", Habilitationsschrift, 43 (1996). Google Scholar

[11]

Dinh Nho Hào, B. T. Johansson, D. Lesnic and Pham Minh Hien, A variational method and approximations of a Cauchy problem for elliptic equations,, J. Algorithms Comput. Technol., 4 (2010), 89. doi: 10.1260/1748-3018.4.1.89. Google Scholar

[12]

M. Hanke and M. Bruhl, Recent progress in electrical impedance tomography. Special section on imaging,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/055. Google Scholar

[13]

P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems,, in, (2001), 119. Google Scholar

[14]

B. He, Y. Wang and D. Wu, Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model by means of the boundary element method,, IEEE Trans. Biomedical Engn., 46 (1999), 1264. doi: 10.1109/10.790505. Google Scholar

[15]

J. Helsing and B. T. Johansson, Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques,, Inverse Probl. Sci. Engn., 18 (2010), 381. doi: 10.1080/17415971003624322. Google Scholar

[16]

D. Holder, "Electrical Impedance Tomography: Methods, History and Applications,", Institute of Physics, (2005). Google Scholar

[17]

Y. C. Hon and T. Wei, A meshless scheme for solving inverse problems of Laplace equation,, in, (2003), 291. Google Scholar

[18]

V. A. Kozlov and V. G. Maz'ya, Iterative procedures for solving ill-posed boundary value problems that preserve differential equations,, Algebra i Analiz, 1 (1989), 144. Google Scholar

[19]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory,, J. Comp. Appl. Math., 61 (1995), 345. doi: 10.1016/0377-0427(94)00073-7. Google Scholar

[20]

R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem,, Inverse Problems, 21 (2005), 1207. doi: 10.1088/0266-5611/21/4/002. Google Scholar

[21]

P. K. Kythe, "Green's Functions and Linear Differential Equations: Theory, Applications, and Computation,", Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, (2011). Google Scholar

[22]

M. M. Lavrentiev, "Some Improperly Posed Problems of Mathematical Physics,", Springer Verlag, (1967). Google Scholar

[23]

J. Y. Lee and J. R. Yoon, A numerical method for Cauchy problem using singular value decomposition,, Comm. Korean Math. Soc. {\bf 16} (2001), 16 (2001), 487. Google Scholar

[24]

L. Marin, Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems,, Engng. Anal. Bound. Elem., 35 (2011), 415. doi: 10.1016/j.enganabound.2010.07.011. Google Scholar

[25]

L. Marin and D. Lesnic, The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations,, Comput. & Structures, 83 (2005), 267. doi: 10.1016/j.compstruc.2004.10.005. Google Scholar

[26]

L. E. Payne, "Improperly Posed Problems in Partial Differential Equations,", Regional Conference Series in Applied Mathematics, (1975). Google Scholar

[27]

T. Regińska, Regularization of discrete ill-posed problems,, BIT, 44 (2004), 119. doi: 10.1023/B:BITN.0000025090.68586.5e. Google Scholar

[28]

N. Tarchanov, "The Cauchy Problem for Solutions of Elliptic Equations,", Mathematical Topics, 7 (1995). Google Scholar

[29]

A. Zeb, L. Elliott, D. B. Ingham and D. Lesnic, Solution of the Cauchy problem for Laplace equation,, in, (1997), 297. Google Scholar

show all references

References:
[1]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations,, Amer. J. Math., 80 (1958), 16. Google Scholar

[2]

F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data,, Inverse Probl. Imaging, 1 (2007), 229. doi: 10.3934/ipi.2007.1.229. Google Scholar

[3]

F. Cakoni, R. Kress and C. Schuft, Integral equations for shape and impedance reconstruction in corrosion detection,, Inverse Problems, 26 (2010). Google Scholar

[4]

H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation,, Inverse Problems, 25 (2009). Google Scholar

[5]

T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes, (French), Ark. Mat., 26 (1939). Google Scholar

[6]

R. Chapko and B. T. Johansson, An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite domains,, Inverse Probl. Imaging, 2 (2008), 317. Google Scholar

[7]

R. Chapko and R. Kress, A hybrid method for inverse boundary value problems in potential theory,, J. Inverse Ill-Posed Probl., 13 (2005), 27. doi: 10.1515/1569394053583711. Google Scholar

[8]

J. Cheng, Y. C. Hon, T. Wei and M. Yamamoto, Numerical computation of a Cauchy problem for Laplace's equation,, ZAMM Z. Angew. Math. Mech., 81 (2001), 665. doi: 10.1002/1521-4001(200110)81:10<665::AID-ZAMM665>3.0.CO;2-V. Google Scholar

[9]

X. Escriva, T. N. Baranger and N. H. Tlatli, Leak identification in porous media by solving the Cauchy problem,, C. R. Mecanique, 335 (2007), 401. doi: 10.1016/j.crme.2007.04.001. Google Scholar

[10]

Dinh Nho Hào, "Methods for Inverse Heat Conduction Problems,", Habilitationsschrift, 43 (1996). Google Scholar

[11]

Dinh Nho Hào, B. T. Johansson, D. Lesnic and Pham Minh Hien, A variational method and approximations of a Cauchy problem for elliptic equations,, J. Algorithms Comput. Technol., 4 (2010), 89. doi: 10.1260/1748-3018.4.1.89. Google Scholar

[12]

M. Hanke and M. Bruhl, Recent progress in electrical impedance tomography. Special section on imaging,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/055. Google Scholar

[13]

P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems,, in, (2001), 119. Google Scholar

[14]

B. He, Y. Wang and D. Wu, Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model by means of the boundary element method,, IEEE Trans. Biomedical Engn., 46 (1999), 1264. doi: 10.1109/10.790505. Google Scholar

[15]

J. Helsing and B. T. Johansson, Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques,, Inverse Probl. Sci. Engn., 18 (2010), 381. doi: 10.1080/17415971003624322. Google Scholar

[16]

D. Holder, "Electrical Impedance Tomography: Methods, History and Applications,", Institute of Physics, (2005). Google Scholar

[17]

Y. C. Hon and T. Wei, A meshless scheme for solving inverse problems of Laplace equation,, in, (2003), 291. Google Scholar

[18]

V. A. Kozlov and V. G. Maz'ya, Iterative procedures for solving ill-posed boundary value problems that preserve differential equations,, Algebra i Analiz, 1 (1989), 144. Google Scholar

[19]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory,, J. Comp. Appl. Math., 61 (1995), 345. doi: 10.1016/0377-0427(94)00073-7. Google Scholar

[20]

R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem,, Inverse Problems, 21 (2005), 1207. doi: 10.1088/0266-5611/21/4/002. Google Scholar

[21]

P. K. Kythe, "Green's Functions and Linear Differential Equations: Theory, Applications, and Computation,", Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, (2011). Google Scholar

[22]

M. M. Lavrentiev, "Some Improperly Posed Problems of Mathematical Physics,", Springer Verlag, (1967). Google Scholar

[23]

J. Y. Lee and J. R. Yoon, A numerical method for Cauchy problem using singular value decomposition,, Comm. Korean Math. Soc. {\bf 16} (2001), 16 (2001), 487. Google Scholar

[24]

L. Marin, Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems,, Engng. Anal. Bound. Elem., 35 (2011), 415. doi: 10.1016/j.enganabound.2010.07.011. Google Scholar

[25]

L. Marin and D. Lesnic, The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations,, Comput. & Structures, 83 (2005), 267. doi: 10.1016/j.compstruc.2004.10.005. Google Scholar

[26]

L. E. Payne, "Improperly Posed Problems in Partial Differential Equations,", Regional Conference Series in Applied Mathematics, (1975). Google Scholar

[27]

T. Regińska, Regularization of discrete ill-posed problems,, BIT, 44 (2004), 119. doi: 10.1023/B:BITN.0000025090.68586.5e. Google Scholar

[28]

N. Tarchanov, "The Cauchy Problem for Solutions of Elliptic Equations,", Mathematical Topics, 7 (1995). Google Scholar

[29]

A. Zeb, L. Elliott, D. B. Ingham and D. Lesnic, Solution of the Cauchy problem for Laplace equation,, in, (1997), 297. Google Scholar

[1]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[2]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[3]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic & Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[4]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[5]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[6]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[7]

Yonggang Zhao, Mingxin Wang. An integral equation involving Bessel potentials on half space. Communications on Pure & Applied Analysis, 2015, 14 (2) : 527-548. doi: 10.3934/cpaa.2015.14.527

[8]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[9]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[10]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[11]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[12]

Nadia Lekrine, Chao-Jiang Xu. Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation. Kinetic & Related Models, 2009, 2 (4) : 647-666. doi: 10.3934/krm.2009.2.647

[13]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[14]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[15]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[16]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[17]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[18]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[19]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[20]

Yongsheng Mi, Chunlai Mu, Pan Zheng. On the Cauchy problem of the modified Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2047-2072. doi: 10.3934/dcdss.2016084

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]