
Previous Article
Besov priors for Bayesian inverse problems
 IPI Home
 This Issue

Next Article
An interpolation/extrapolation approach to Xray imaging of solar flares
Uniqueness for an illposed reactiondispersion model. Application to organic pollution in streamwaters
1.  LMAC, EA 2222, Université de Technologie de Compiègne, BP 20529, 60205 COMPIEGNE Cedex, France 
References:
[1] 
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces,'', Second edition, 140 (2003). Google Scholar 
[2] 
M. Andrle, F. Ben Belgacem and A. El Badia, Identification of moving pointwise sources in an advectiondispersionreaction equation,, Inverse Problems, 27 (2011). doi: 10.1088/02665611/27/2/025007. Google Scholar 
[3] 
F. Ben Belgacem, Uniqueness for an illposed parabolic system,, Comptes Rendus Mathématique Acad. Sci. Paris, 349 (2011), 1161. doi: 10.1016/j.crma.2011.10.006. Google Scholar 
[4] 
A. Bermúdez, Mathematical techniques for some environmental problems related to water pollution control,, in, 27 (1993), 12. Google Scholar 
[5] 
C. Bernardi, C. Canuto and Y. Maday, Generalized infsup condition for Chebyshev spectral approximation of the Stokes problem,, SIAM J. Numer. Anal., 25 (1988), 1237. doi: 10.1137/0725070. Google Scholar 
[6] 
F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods,'', Springer Series in Computational Mathematics, 15 (1991). Google Scholar 
[7] 
L. C. Brown and T. O. Barnwell, "The Enhanced Stream Water Quality Models QUAL2E and QUAL2EUNCAS: Documentation and User Manual,'', Environmental Protection Agency, (1987). Google Scholar 
[8] 
S. C. Chapra, "Applied Numerical Methods with MATLAB,'', McGrawHill, (2004). Google Scholar 
[9] 
J. Cousteix and J. Mauss, "Analyse Asymptotique et Couche Limite,'', Mathématiques et Applications, 56 (2006). Google Scholar 
[10] 
R. Dautray and J.L. Lions, "Mathematical Analyis and Numerical Methods for Science and Technology,'', Vol. 5, (1992). Google Scholar 
[11] 
W. Eckhaus, "Asymptotic Analysis of Singular Perturbations,'', Studies in Mathematics and its Applications, 9 (1979). Google Scholar 
[12] 
A. El Badia, T. HaDuong and A. Hamdi, Identification of a point source in a linear advectiondispersionreaction equation: Application to a pollution source problem,, Inverse Problems, 21 (2005), 1121. doi: 10.1088/02665611/21/3/020. Google Scholar 
[13] 
A. El Badia and A. Hamdi, Inverse source problem in an advectiondispersionreaction system: Application to water pollution,, Inverse Problems, 23 (2007), 2103. doi: 10.1088/02665611/23/5/017. Google Scholar 
[14] 
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,'', Second edition, 224 (1983). Google Scholar 
[15] 
G. Gripenberg, S.O. London and O. Steffans, "Volterra Integral and Functional Equations,'', Encyclopedia of Mathematics and its Applications, 34 (1990). Google Scholar 
[16] 
A. Hamdi, Identification of a timevarying point source in a system of two coupled linear diffusionadvectionreaction equations: Application to surface water pollution,, Inverse Problems, 25 (2009). doi: 10.1088/02665611/25/11/115009. Google Scholar 
[17] 
A. Hamdi, The recovery of a timedependent point source in a linear transport equation: Application to surface water pollution,, Inverse Problems, 25 (2009). doi: 10.1088/02665611/25/7/075006. Google Scholar 
[18] 
G. Jolánkai, "Basic River Water Quality Models: Computer Aided Learning (CAL) Programme on Water Quality Modelling (WQMCAL),'', International Hydrological Programme, (1213). Google Scholar 
[19] 
J.L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'', Dunod, (1968). Google Scholar 
[20] 
G. I. Marchuk, "Mathematical Models in Environmental Problems,'', Encyclopedia of Mathematics and its Applications, 34 (1986). Google Scholar 
[21] 
A. Okubo, "Diffusion and Ecological Problems: Mathematical Models,'', An extended version of the Japanese edition, 10 (1980). Google Scholar 
[22] 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Applied Mathematical Sciences, 44 (1983). Google Scholar 
[23] 
J.C. Saut and B. Scheurer, Unique continuation for some evolution equations,, Journal of Differential Equations, 66 (1987), 118. doi: 10.1016/00220396(87)90043X. Google Scholar 
[24] 
C. N. Sawyer, P. L. McCarty and G. F. Parkin, "Chemistry for Environmental Engineering and Science,'', Unpublished proceedings of the Delaware Conference on Ill Posed Inverse Problems, (1980). Google Scholar 
[25] 
G. Wahba, "Ill Posed Problems: Numerical and Statistical Methods for Mildly, Moderately and Severely Ill Posed Problems With Noisy Data,'', McGrawHill, (2003). Google Scholar 
show all references
References:
[1] 
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces,'', Second edition, 140 (2003). Google Scholar 
[2] 
M. Andrle, F. Ben Belgacem and A. El Badia, Identification of moving pointwise sources in an advectiondispersionreaction equation,, Inverse Problems, 27 (2011). doi: 10.1088/02665611/27/2/025007. Google Scholar 
[3] 
F. Ben Belgacem, Uniqueness for an illposed parabolic system,, Comptes Rendus Mathématique Acad. Sci. Paris, 349 (2011), 1161. doi: 10.1016/j.crma.2011.10.006. Google Scholar 
[4] 
A. Bermúdez, Mathematical techniques for some environmental problems related to water pollution control,, in, 27 (1993), 12. Google Scholar 
[5] 
C. Bernardi, C. Canuto and Y. Maday, Generalized infsup condition for Chebyshev spectral approximation of the Stokes problem,, SIAM J. Numer. Anal., 25 (1988), 1237. doi: 10.1137/0725070. Google Scholar 
[6] 
F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods,'', Springer Series in Computational Mathematics, 15 (1991). Google Scholar 
[7] 
L. C. Brown and T. O. Barnwell, "The Enhanced Stream Water Quality Models QUAL2E and QUAL2EUNCAS: Documentation and User Manual,'', Environmental Protection Agency, (1987). Google Scholar 
[8] 
S. C. Chapra, "Applied Numerical Methods with MATLAB,'', McGrawHill, (2004). Google Scholar 
[9] 
J. Cousteix and J. Mauss, "Analyse Asymptotique et Couche Limite,'', Mathématiques et Applications, 56 (2006). Google Scholar 
[10] 
R. Dautray and J.L. Lions, "Mathematical Analyis and Numerical Methods for Science and Technology,'', Vol. 5, (1992). Google Scholar 
[11] 
W. Eckhaus, "Asymptotic Analysis of Singular Perturbations,'', Studies in Mathematics and its Applications, 9 (1979). Google Scholar 
[12] 
A. El Badia, T. HaDuong and A. Hamdi, Identification of a point source in a linear advectiondispersionreaction equation: Application to a pollution source problem,, Inverse Problems, 21 (2005), 1121. doi: 10.1088/02665611/21/3/020. Google Scholar 
[13] 
A. El Badia and A. Hamdi, Inverse source problem in an advectiondispersionreaction system: Application to water pollution,, Inverse Problems, 23 (2007), 2103. doi: 10.1088/02665611/23/5/017. Google Scholar 
[14] 
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,'', Second edition, 224 (1983). Google Scholar 
[15] 
G. Gripenberg, S.O. London and O. Steffans, "Volterra Integral and Functional Equations,'', Encyclopedia of Mathematics and its Applications, 34 (1990). Google Scholar 
[16] 
A. Hamdi, Identification of a timevarying point source in a system of two coupled linear diffusionadvectionreaction equations: Application to surface water pollution,, Inverse Problems, 25 (2009). doi: 10.1088/02665611/25/11/115009. Google Scholar 
[17] 
A. Hamdi, The recovery of a timedependent point source in a linear transport equation: Application to surface water pollution,, Inverse Problems, 25 (2009). doi: 10.1088/02665611/25/7/075006. Google Scholar 
[18] 
G. Jolánkai, "Basic River Water Quality Models: Computer Aided Learning (CAL) Programme on Water Quality Modelling (WQMCAL),'', International Hydrological Programme, (1213). Google Scholar 
[19] 
J.L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'', Dunod, (1968). Google Scholar 
[20] 
G. I. Marchuk, "Mathematical Models in Environmental Problems,'', Encyclopedia of Mathematics and its Applications, 34 (1986). Google Scholar 
[21] 
A. Okubo, "Diffusion and Ecological Problems: Mathematical Models,'', An extended version of the Japanese edition, 10 (1980). Google Scholar 
[22] 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Applied Mathematical Sciences, 44 (1983). Google Scholar 
[23] 
J.C. Saut and B. Scheurer, Unique continuation for some evolution equations,, Journal of Differential Equations, 66 (1987), 118. doi: 10.1016/00220396(87)90043X. Google Scholar 
[24] 
C. N. Sawyer, P. L. McCarty and G. F. Parkin, "Chemistry for Environmental Engineering and Science,'', Unpublished proceedings of the Delaware Conference on Ill Posed Inverse Problems, (1980). Google Scholar 
[25] 
G. Wahba, "Ill Posed Problems: Numerical and Statistical Methods for Mildly, Moderately and Severely Ill Posed Problems With Noisy Data,'', McGrawHill, (2003). Google Scholar 
[1] 
Gang Luo, Qingzhi Yang. The pointwise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 00. doi: 10.3934/jimo.2019115 
[2] 
Alfredo Lorenzi, Luca Lorenzi. A strongly illposed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499524. doi: 10.3934/eect.2014.3.499 
[3] 
Misha Perepelitsa. An illposed problem for the NavierStokes equations for compressible flows. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 609623. doi: 10.3934/dcds.2010.26.609 
[4] 
Yongqin Liu. The pointwise estimates of solutions for semilinear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237252. doi: 10.3934/cpaa.2013.12.237 
[5] 
Petteri Harjulehto, Peter Hästö, Juha Tiirola. Pointwise behavior of the GemanMcClure and the HebertLeahy image restoration models. Inverse Problems & Imaging, 2015, 9 (3) : 835851. doi: 10.3934/ipi.2015.9.835 
[6] 
Jiao Chen, Weike Wang. The pointwise estimates for the solution of damped wave equation with nonlinear convection in multidimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307330. doi: 10.3934/cpaa.2014.13.307 
[7] 
Qinxi Bai, Zhijun Li, Lei Wang, Bing Tan, Enmin Feng. Parameter identification and numerical simulation for the exchange coefficient of dissolved oxygen concentration under ice in a boreal lake. Journal of Industrial & Management Optimization, 2018, 14 (4) : 14631478. doi: 10.3934/jimo.2018016 
[8] 
Youri V. Egorov, Evariste SanchezPalencia. Remarks on certain singular perturbations with illposed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 12931305. doi: 10.3934/dcds.2011.31.1293 
[9] 
Stefan Kindermann. Convergence of the gradient method for illposed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703720. doi: 10.3934/ipi.2017033 
[10] 
Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for illposed nonLinear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 13631393. doi: 10.3934/dcdsb.2018155 
[11] 
Ovide Arino, Eva Sánchez. A saddle point theorem for functional statedependent delay differential equations. Discrete & Continuous Dynamical Systems  A, 2005, 12 (4) : 687722. doi: 10.3934/dcds.2005.12.687 
[12] 
Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On LevenbergMarquardtKaczmarz iterative methods for solving systems of nonlinear illposed equations. Inverse Problems & Imaging, 2010, 4 (3) : 335350. doi: 10.3934/ipi.2010.4.335 
[13] 
Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear illposed equations. Inverse Problems & Imaging, 2011, 5 (1) : 117. doi: 10.3934/ipi.2011.5.1 
[14] 
Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasireversibility to solve illposed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 9711002. doi: 10.3934/ipi.2015.9.971 
[15] 
ShaoYuan Huang, ShinHwa Wang. On Sshaped bifurcation curves for a twopoint boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems  A, 2015, 35 (10) : 48394858. doi: 10.3934/dcds.2015.35.4839 
[16] 
Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an illposed strongly nonlinear elliptic equation with $p$Laplace operator and $L^1$type of nonlinearity. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 12731295. doi: 10.3934/dcdsb.2019016 
[17] 
Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear illposed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507523. doi: 10.3934/ipi.2007.1.507 
[18] 
Matthew A. Fury. Estimates for solutions of nonautonomous semilinear illposed problems. Conference Publications, 2015, 2015 (special) : 479488. doi: 10.3934/proc.2015.0479 
[19] 
Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An innerouter regularizing method for illposed problems. Inverse Problems & Imaging, 2014, 8 (2) : 409420. doi: 10.3934/ipi.2014.8.409 
[20] 
Matthew A. Fury. Regularization for illposed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259272. doi: 10.3934/proc.2013.2013.259 
2018 Impact Factor: 1.469
Tools
Metrics
Other articles
by authors
[Back to Top]