
Previous Article
Reconstructions from boundary measurements on admissible manifolds
 IPI Home
 This Issue

Next Article
Cumulative wavefront reconstructor for the ShackHartmann sensor
Computing the fibre orientation from Radon data using local Radon transform
1.  Ceramic Materials Engineering, University of Bayreuth, 95440 Bayreuth, Germany, Germany, Germany 
References:
[1] 
E. J. Candès, "Ridgelets: Theory and Applications,", Ph.D. Thesis, (1998). 
[2] 
E. J. Candès and D. L. Donoho, Curveletsa surprisingly effective nonadaptive representation for objects with edges,, in, (1999). 
[3] 
E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise $C^2$ singularities,, Comm. on Pure and Appl. Math., 57 (2004), 219. 
[4] 
E. J. Candès and J. Romberg, Practical signal recovery from random projections,, Wavelet Applications in Signal and Image Processing XI, (5914). 
[5] 
A. Faridani, E. Ritman, K. Smith and T. Kennan, Local tomography,, SIAM, 52 (1992), 459. doi: 10.1137/0152026. 
[6] 
A. Faridani, D. Finch, E. Ritman, K. Smith and T. Kennan, Local tomography II,, SIAM, 57 (1997), 1095. doi: 10.1137/S0036139995286357. 
[7] 
L. Gang, O. Chutape and M. Krishnan, Detection and measurement of retinal vessels in fundus images using amplitude modified secondorder gaussian filter,, IEEE Transactions on Biomedical Engineering, 49 (2002), 168. doi: 10.1109/10.979356. 
[8] 
A. Hoover, V. Kouznetsova and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,, IEEE Transactions on Medical Imaging, 19 (2000), 203. 
[9] 
M. Krause, R. M. Alles, B. Burgeth and J. Weickert, Retinal vessel detection via second derivative of local Radon transform,, Technical Report No. 212, (2009). 
[10] 
M. Krause, J. M. Hausherr, B. Burgeth, C. Herrmann and W. Krenkel, Determination of the fibre orientation in composites using the structure tensor and local Xray transform,, Journal of Materials Science, 45 (2010), 888. doi: 10.1007/s1085300940164. 
[11] 
A. K. Louis, Approximate inverse for linear and some nonlinear problems,, Inverse Problems, 12 (1996), 175. 
[12] 
A. K. Louis, Combining image reconstruction and image analysis with an application to twodimensional tomography,, SIAM J. Imaging Sciences, 1 (2008), 188. doi: 10.1137/070700863. 
[13] 
A. K. Louis, Diffusion reconstruction from very noisy tomographic data,, Inverse Problems and Imaging, 4 (2010), 675. doi: 10.3934/ipi.2010.4.675. 
[14] 
F. Natterer, "The Mathematics of Computerized Tomography,", B. G. Teubner, (1986). 
[15] 
A. Rieder, R. Dietz and T. Schuster, Approximate inverse meets local tomography,, Math. Meth. Appl. Sci., 23 (2000), 1373. doi: 10.1002/10991476(200010)23:15<1373::AIDMMA170>3.0.CO;2A. 
[16] 
M. Sofka and C. Stewart, Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures,, IEEE Transactions on Medical Imaging, 25 (2006), 1531. 
[17] 
M. Van Ginkel, "Image Analysis Using Orientation Space Based on Steerable Filters,", Ph.D thesis, (2002). 
[18] 
K. Vermeer, F. Vos, H. Lemij and A. Vossepoel, A model based method for retinal blood vessel detection,, Computers in Biology and Medecine, 34 (2004), 209. doi: 10.1016/S00104825(03)000556. 
show all references
References:
[1] 
E. J. Candès, "Ridgelets: Theory and Applications,", Ph.D. Thesis, (1998). 
[2] 
E. J. Candès and D. L. Donoho, Curveletsa surprisingly effective nonadaptive representation for objects with edges,, in, (1999). 
[3] 
E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise $C^2$ singularities,, Comm. on Pure and Appl. Math., 57 (2004), 219. 
[4] 
E. J. Candès and J. Romberg, Practical signal recovery from random projections,, Wavelet Applications in Signal and Image Processing XI, (5914). 
[5] 
A. Faridani, E. Ritman, K. Smith and T. Kennan, Local tomography,, SIAM, 52 (1992), 459. doi: 10.1137/0152026. 
[6] 
A. Faridani, D. Finch, E. Ritman, K. Smith and T. Kennan, Local tomography II,, SIAM, 57 (1997), 1095. doi: 10.1137/S0036139995286357. 
[7] 
L. Gang, O. Chutape and M. Krishnan, Detection and measurement of retinal vessels in fundus images using amplitude modified secondorder gaussian filter,, IEEE Transactions on Biomedical Engineering, 49 (2002), 168. doi: 10.1109/10.979356. 
[8] 
A. Hoover, V. Kouznetsova and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,, IEEE Transactions on Medical Imaging, 19 (2000), 203. 
[9] 
M. Krause, R. M. Alles, B. Burgeth and J. Weickert, Retinal vessel detection via second derivative of local Radon transform,, Technical Report No. 212, (2009). 
[10] 
M. Krause, J. M. Hausherr, B. Burgeth, C. Herrmann and W. Krenkel, Determination of the fibre orientation in composites using the structure tensor and local Xray transform,, Journal of Materials Science, 45 (2010), 888. doi: 10.1007/s1085300940164. 
[11] 
A. K. Louis, Approximate inverse for linear and some nonlinear problems,, Inverse Problems, 12 (1996), 175. 
[12] 
A. K. Louis, Combining image reconstruction and image analysis with an application to twodimensional tomography,, SIAM J. Imaging Sciences, 1 (2008), 188. doi: 10.1137/070700863. 
[13] 
A. K. Louis, Diffusion reconstruction from very noisy tomographic data,, Inverse Problems and Imaging, 4 (2010), 675. doi: 10.3934/ipi.2010.4.675. 
[14] 
F. Natterer, "The Mathematics of Computerized Tomography,", B. G. Teubner, (1986). 
[15] 
A. Rieder, R. Dietz and T. Schuster, Approximate inverse meets local tomography,, Math. Meth. Appl. Sci., 23 (2000), 1373. doi: 10.1002/10991476(200010)23:15<1373::AIDMMA170>3.0.CO;2A. 
[16] 
M. Sofka and C. Stewart, Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures,, IEEE Transactions on Medical Imaging, 25 (2006), 1531. 
[17] 
M. Van Ginkel, "Image Analysis Using Orientation Space Based on Steerable Filters,", Ph.D thesis, (2002). 
[18] 
K. Vermeer, F. Vos, H. Lemij and A. Vossepoel, A model based method for retinal blood vessel detection,, Computers in Biology and Medecine, 34 (2004), 209. doi: 10.1016/S00104825(03)000556. 
[1] 
Philippe Destuynder, Caroline Fabre. Few remarks on the use of Love waves in non destructive testing. Discrete & Continuous Dynamical Systems  S, 2016, 9 (2) : 427444. doi: 10.3934/dcdss.2016005 
[2] 
Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649653. doi: 10.3934/ipi.2010.4.649 
[3] 
Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 10291039. doi: 10.3934/cpaa.2016.15.1029 
[4] 
Shousheng Luo, Tie Zhou. Superiorization of EM algorithm and its application in SinglePhoton Emission Computed Tomography(SPECT). Inverse Problems & Imaging, 2014, 8 (1) : 223246. doi: 10.3934/ipi.2014.8.223 
[5] 
Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721734. doi: 10.3934/ipi.2010.4.721 
[6] 
Ali Gholami, Mauricio D. Sacchi. Timeinvariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501519. doi: 10.3934/ipi.2017023 
[7] 
Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693702. doi: 10.3934/ipi.2010.4.693 
[8] 
JeanFrançois Crouzet. 3D coded aperture imaging, illposedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341353. doi: 10.3934/ipi.2011.5.341 
[9] 
C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457479. doi: 10.3934/ipi.2007.1.457 
[10] 
Chihiro Matsuoka, Koichi Hiraide. Special functions created by BorelLaplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 111. doi: 10.3934/era.2011.18.1 
[11] 
C. Xiong, J.P. Miller, F. Gao, Y. Yan, J.C. Morris. Testing increasing hazard rate for the progression time of dementia. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 813821. doi: 10.3934/dcdsb.2004.4.813 
[12] 
JeanFrançois Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459477. doi: 10.3934/amc.2014.8.459 
[13] 
Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non starshaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353371. doi: 10.3934/ipi.2009.3.353 
[14] 
Tak Kuen Siu, Yang Shen. Riskminimizing pricing and Esscher transform in a general nonMarkovian regimeswitching jumpdiffusion model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 25952626. doi: 10.3934/dcdsb.2017100 
[15] 
Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems & Imaging, 2010, 4 (4) : 631637. doi: 10.3934/ipi.2010.4.631 
[16] 
Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 325336. doi: 10.3934/dcdss.2009.2.325 
[17] 
Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111130. doi: 10.3934/ipi.2010.4.111 
[18] 
Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157165. doi: 10.3934/jgm.2017006 
[19] 
Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173197. doi: 10.3934/ipi.2014.8.173 
[20] 
Plamen Stefanov, Wenxiang Cong, Ge Wang. Modulated luminescence tomography. Inverse Problems & Imaging, 2015, 9 (2) : 579589. doi: 10.3934/ipi.2015.9.579 
2016 Impact Factor: 1.094
Tools
Metrics
Other articles
by authors
[Back to Top]