2011, 5(4): 879-891. doi: 10.3934/ipi.2011.5.879

Computing the fibre orientation from Radon data using local Radon transform

1. 

Ceramic Materials Engineering, University of Bayreuth, 95440 Bayreuth, Germany, Germany, Germany

Received  March 2010 Revised  June 2011 Published  November 2011

Computed tomography (CT) has become a common analysis method in the materials sciences. It allows the internal visualisation of the complete volume of an object, providing 3D information about the internal structures. One field where CT is applied is the examination of fibre-reinforced composite structures. Fibre-reinforced composites are typically composed of two types of material, mainly of high strength fibres embedded in a surrounding matrix. In this material class, the fibres typically determine the strength of the composite materials, which is largely dependent on the orientation of the fibres. Knowledge of the fibre orientation is therefore essential for the evaluation of maximal loading or for the prediction of failure. The easiest way to determine the fibre orientation is to compute it from the reconstructions received from the tomograph. A different method to determine fibre orientation is to compute it directly from Radon data using the combination of reconstruction and image analysis introduced by Louis [A. K. Louis, Combining Image Reconstruction and Image Analysis with an Application to 2D - Tomography, SIAM J. Imaging Sciences 1 (2008), 188--208]. This can be achieved by adapting the reconstruction process in computed tomography by the use of anisotropic, elongated convolution filters, leading to a set of reconstruction kernels that are dependent on the angle of the projections, thereby reflecting the anisotropy of the filters. In this paper, the two-dimensional case of computing fibre orientation directly from simulated Radon data is presented.
Citation: Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems & Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879
References:
[1]

E. J. Candès, "Ridgelets: Theory and Applications,", Ph.D. Thesis, (1998).

[2]

E. J. Candès and D. L. Donoho, Curvelets-a surprisingly effective nonadaptive representation for objects with edges,, in, (1999).

[3]

E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise $C^2$ singularities,, Comm. on Pure and Appl. Math., 57 (2004), 219.

[4]

E. J. Candès and J. Romberg, Practical signal recovery from random projections,, Wavelet Applications in Signal and Image Processing XI, (5914).

[5]

A. Faridani, E. Ritman, K. Smith and T. Kennan, Local tomography,, SIAM, 52 (1992), 459. doi: 10.1137/0152026.

[6]

A. Faridani, D. Finch, E. Ritman, K. Smith and T. Kennan, Local tomography II,, SIAM, 57 (1997), 1095. doi: 10.1137/S0036139995286357.

[7]

L. Gang, O. Chutape and M. Krishnan, Detection and measurement of retinal vessels in fundus images using amplitude modified second-order gaussian filter,, IEEE Transactions on Biomedical Engineering, 49 (2002), 168. doi: 10.1109/10.979356.

[8]

A. Hoover, V. Kouznetsova and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,, IEEE Transactions on Medical Imaging, 19 (2000), 203.

[9]

M. Krause, R. M. Alles, B. Burgeth and J. Weickert, Retinal vessel detection via second derivative of local Radon transform,, Technical Report No. 212, (2009).

[10]

M. Krause, J. M. Hausherr, B. Burgeth, C. Herrmann and W. Krenkel, Determination of the fibre orientation in composites using the structure tensor and local X-ray transform,, Journal of Materials Science, 45 (2010), 888. doi: 10.1007/s10853-009-4016-4.

[11]

A. K. Louis, Approximate inverse for linear and some nonlinear problems,, Inverse Problems, 12 (1996), 175.

[12]

A. K. Louis, Combining image reconstruction and image analysis with an application to two-dimensional tomography,, SIAM J. Imaging Sciences, 1 (2008), 188. doi: 10.1137/070700863.

[13]

A. K. Louis, Diffusion reconstruction from very noisy tomographic data,, Inverse Problems and Imaging, 4 (2010), 675. doi: 10.3934/ipi.2010.4.675.

[14]

F. Natterer, "The Mathematics of Computerized Tomography,", B. G. Teubner, (1986).

[15]

A. Rieder, R. Dietz and T. Schuster, Approximate inverse meets local tomography,, Math. Meth. Appl. Sci., 23 (2000), 1373. doi: 10.1002/1099-1476(200010)23:15<1373::AID-MMA170>3.0.CO;2-A.

[16]

M. Sofka and C. Stewart, Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures,, IEEE Transactions on Medical Imaging, 25 (2006), 1531.

[17]

M. Van Ginkel, "Image Analysis Using Orientation Space Based on Steerable Filters,", Ph.D thesis, (2002).

[18]

K. Vermeer, F. Vos, H. Lemij and A. Vossepoel, A model based method for retinal blood vessel detection,, Computers in Biology and Medecine, 34 (2004), 209. doi: 10.1016/S0010-4825(03)00055-6.

show all references

References:
[1]

E. J. Candès, "Ridgelets: Theory and Applications,", Ph.D. Thesis, (1998).

[2]

E. J. Candès and D. L. Donoho, Curvelets-a surprisingly effective nonadaptive representation for objects with edges,, in, (1999).

[3]

E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise $C^2$ singularities,, Comm. on Pure and Appl. Math., 57 (2004), 219.

[4]

E. J. Candès and J. Romberg, Practical signal recovery from random projections,, Wavelet Applications in Signal and Image Processing XI, (5914).

[5]

A. Faridani, E. Ritman, K. Smith and T. Kennan, Local tomography,, SIAM, 52 (1992), 459. doi: 10.1137/0152026.

[6]

A. Faridani, D. Finch, E. Ritman, K. Smith and T. Kennan, Local tomography II,, SIAM, 57 (1997), 1095. doi: 10.1137/S0036139995286357.

[7]

L. Gang, O. Chutape and M. Krishnan, Detection and measurement of retinal vessels in fundus images using amplitude modified second-order gaussian filter,, IEEE Transactions on Biomedical Engineering, 49 (2002), 168. doi: 10.1109/10.979356.

[8]

A. Hoover, V. Kouznetsova and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,, IEEE Transactions on Medical Imaging, 19 (2000), 203.

[9]

M. Krause, R. M. Alles, B. Burgeth and J. Weickert, Retinal vessel detection via second derivative of local Radon transform,, Technical Report No. 212, (2009).

[10]

M. Krause, J. M. Hausherr, B. Burgeth, C. Herrmann and W. Krenkel, Determination of the fibre orientation in composites using the structure tensor and local X-ray transform,, Journal of Materials Science, 45 (2010), 888. doi: 10.1007/s10853-009-4016-4.

[11]

A. K. Louis, Approximate inverse for linear and some nonlinear problems,, Inverse Problems, 12 (1996), 175.

[12]

A. K. Louis, Combining image reconstruction and image analysis with an application to two-dimensional tomography,, SIAM J. Imaging Sciences, 1 (2008), 188. doi: 10.1137/070700863.

[13]

A. K. Louis, Diffusion reconstruction from very noisy tomographic data,, Inverse Problems and Imaging, 4 (2010), 675. doi: 10.3934/ipi.2010.4.675.

[14]

F. Natterer, "The Mathematics of Computerized Tomography,", B. G. Teubner, (1986).

[15]

A. Rieder, R. Dietz and T. Schuster, Approximate inverse meets local tomography,, Math. Meth. Appl. Sci., 23 (2000), 1373. doi: 10.1002/1099-1476(200010)23:15<1373::AID-MMA170>3.0.CO;2-A.

[16]

M. Sofka and C. Stewart, Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures,, IEEE Transactions on Medical Imaging, 25 (2006), 1531.

[17]

M. Van Ginkel, "Image Analysis Using Orientation Space Based on Steerable Filters,", Ph.D thesis, (2002).

[18]

K. Vermeer, F. Vos, H. Lemij and A. Vossepoel, A model based method for retinal blood vessel detection,, Computers in Biology and Medecine, 34 (2004), 209. doi: 10.1016/S0010-4825(03)00055-6.

[1]

Philippe Destuynder, Caroline Fabre. Few remarks on the use of Love waves in non destructive testing. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 427-444. doi: 10.3934/dcdss.2016005

[2]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[3]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[4]

Shousheng Luo, Tie Zhou. Superiorization of EM algorithm and its application in Single-Photon Emission Computed Tomography(SPECT). Inverse Problems & Imaging, 2014, 8 (1) : 223-246. doi: 10.3934/ipi.2014.8.223

[5]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[6]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[7]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[8]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[9]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[10]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

[11]

C. Xiong, J.P. Miller, F. Gao, Y. Yan, J.C. Morris. Testing increasing hazard rate for the progression time of dementia. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 813-821. doi: 10.3934/dcdsb.2004.4.813

[12]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[13]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[14]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[15]

Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems & Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631

[16]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[17]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

[18]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[19]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[20]

Plamen Stefanov, Wenxiang Cong, Ge Wang. Modulated luminescence tomography. Inverse Problems & Imaging, 2015, 9 (2) : 579-589. doi: 10.3934/ipi.2015.9.579

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

[Back to Top]