2011, 5(3): 659-674. doi: 10.3934/ipi.2011.5.659

Microlocal aspects of common offset synthetic aperture radar imaging

1. 

Department of Mathematics, Tufts University, 503, Boston Avenue, Medford, MA 02155, United States, United States

Received  August 2010 Revised  February 2011 Published  August 2011

In this article, we analyze the microlocal properties of the linearized forward scattering operator $F$ and the reconstruction operator $F^{*}F$ appearing in bistatic synthetic aperture radar imaging. In our model, the radar source and detector travel along a line a fixed distance apart. We show that $F$ is a Fourier integral operator, and we give the mapping properties of the projections from the canonical relation of $F$, showing that the right projection is a blow-down and the left projection is a fold. We then show that $F^{*}F$ is a singular FIO belonging to the class $I^{3,0}$.
Citation: Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659
References:
[1]

L.-E. Andersson, On the determination of a function from spherical averages,, SIAM J. Math. Anal., 19 (1988), 214. doi: 10.1137/0519016.

[2]

M. Cheney, A mathematical tutorial on synthetic aperture radar,, SIAM Rev., 43 (2001), 301. doi: 10.1137/S0036144500368859.

[3]

M. Cheney and B. Borden, "Fundamentals of Radar Imaging,", CBMS-NSF Regional Conference Series in Applied Mathematics, 79 (2009).

[4]

J. Duistermaat, "Fourier Integral Operators,", Birkhäuser Boston, (1996).

[5]

J. Cohen and H. Bleistein, Velocity inversion procedure for acoustic waves,, Geophysics, 44 (1979), 1077. doi: 10.1190/1.1440996.

[6]

T. Dowling, "Radar Imaging Using Multiply Scattered Waves,", Ph.D. Thesis, (2009).

[7]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities,, Comm. Partial Differential Equations, 30 (2005), 1717.

[8]

R. Felea, Displacement of artefacts in inverse scattering,, Inverse Problems, 23 (2007), 1519. doi: 10.1088/0266-5611/23/4/009.

[9]

R. Felea and A. Greenleaf, An FIO calculus for marine seismic imaging: Folds and cross caps,, Comm. P.D.E., 33 (2008), 45. doi: 10.1080/03605300701318716.

[10]

A. Greenleaf and G. Uhlmann, Non-local inversion formulas for the X-ray transform,, Duke Math. J., 58 (1989), 205. doi: 10.1215/S0012-7094-89-05811-0.

[11]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols,, J. Functional Anal., 89 (1990), 202. doi: 10.1016/0022-1236(90)90011-9.

[12]

A. Greenleaf and G. Uhlmann, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms,, Ann. Inst. Fourier (Grenoble), 40 (1990), 443.

[13]

A. Greenleaf and G. Uhlmann, Microlocal techniques in integral geometry,, in, 113 (1989), 121.

[14]

V. Guillemin, "Cosmology in $(2 + 1)$-Dimensions, Cyclic Models, and Deformations of $M_{2,1}$,", Annals of Mathematics Studies, 121 (1989).

[15]

V. Guillemin and S. Sternberg, "Geometric Asymptotics,", Mathematical Surveys, (1977).

[16]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols,, Duke Math. J., 48 (1981), 251. doi: 10.1215/S0012-7094-81-04814-6.

[17]

L. Hörmander, Fourier integral operators, I,, Acta Mathematica, 127 (1971), 79. doi: 10.1007/BF02392052.

[18]

A. M. Horne and G. Yates, "Bistatic Synthetic Aperture Radar,", Proc. IEEE Radar Conf., (2002), 6.

[19]

L. Hörmander, "The Analysis of Linear Partial Differential Operators, I-IV,", Springer-Verlag, (1983).

[20]

A. K. Louis and E. T. Quinto, Local tomographic methods in SONAR,, in, (2000), 147.

[21]

R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem,, Comm. Pure Appl. Math., 32 (1979), 483.

[22]

C. J. Nolan and M. Cheney, Synthetic aperture inversion,, Inverse Problems, 18 (2002), 221. doi: 10.1088/0266-5611/18/1/315.

[23]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging,, J. Fourier Anal. Appl., 10 (2004), 133. doi: 10.1007/s00041-004-8008-0.

[24]

E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331. doi: 10.1090/S0002-9947-1980-0552261-8.

[25]

F. Tréves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. 1 and 2,, Plenum Press, (1980).

[26]

C. E. Yarman, B. Yazıcı and M. Cheney, Bistatic synthetic aperture radar imaging with arbitrary trajectories,, IEEE Transactions on Image Processing, 17 (2008), 84. doi: 10.1109/TIP.2007.911812.

show all references

References:
[1]

L.-E. Andersson, On the determination of a function from spherical averages,, SIAM J. Math. Anal., 19 (1988), 214. doi: 10.1137/0519016.

[2]

M. Cheney, A mathematical tutorial on synthetic aperture radar,, SIAM Rev., 43 (2001), 301. doi: 10.1137/S0036144500368859.

[3]

M. Cheney and B. Borden, "Fundamentals of Radar Imaging,", CBMS-NSF Regional Conference Series in Applied Mathematics, 79 (2009).

[4]

J. Duistermaat, "Fourier Integral Operators,", Birkhäuser Boston, (1996).

[5]

J. Cohen and H. Bleistein, Velocity inversion procedure for acoustic waves,, Geophysics, 44 (1979), 1077. doi: 10.1190/1.1440996.

[6]

T. Dowling, "Radar Imaging Using Multiply Scattered Waves,", Ph.D. Thesis, (2009).

[7]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities,, Comm. Partial Differential Equations, 30 (2005), 1717.

[8]

R. Felea, Displacement of artefacts in inverse scattering,, Inverse Problems, 23 (2007), 1519. doi: 10.1088/0266-5611/23/4/009.

[9]

R. Felea and A. Greenleaf, An FIO calculus for marine seismic imaging: Folds and cross caps,, Comm. P.D.E., 33 (2008), 45. doi: 10.1080/03605300701318716.

[10]

A. Greenleaf and G. Uhlmann, Non-local inversion formulas for the X-ray transform,, Duke Math. J., 58 (1989), 205. doi: 10.1215/S0012-7094-89-05811-0.

[11]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols,, J. Functional Anal., 89 (1990), 202. doi: 10.1016/0022-1236(90)90011-9.

[12]

A. Greenleaf and G. Uhlmann, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms,, Ann. Inst. Fourier (Grenoble), 40 (1990), 443.

[13]

A. Greenleaf and G. Uhlmann, Microlocal techniques in integral geometry,, in, 113 (1989), 121.

[14]

V. Guillemin, "Cosmology in $(2 + 1)$-Dimensions, Cyclic Models, and Deformations of $M_{2,1}$,", Annals of Mathematics Studies, 121 (1989).

[15]

V. Guillemin and S. Sternberg, "Geometric Asymptotics,", Mathematical Surveys, (1977).

[16]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols,, Duke Math. J., 48 (1981), 251. doi: 10.1215/S0012-7094-81-04814-6.

[17]

L. Hörmander, Fourier integral operators, I,, Acta Mathematica, 127 (1971), 79. doi: 10.1007/BF02392052.

[18]

A. M. Horne and G. Yates, "Bistatic Synthetic Aperture Radar,", Proc. IEEE Radar Conf., (2002), 6.

[19]

L. Hörmander, "The Analysis of Linear Partial Differential Operators, I-IV,", Springer-Verlag, (1983).

[20]

A. K. Louis and E. T. Quinto, Local tomographic methods in SONAR,, in, (2000), 147.

[21]

R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem,, Comm. Pure Appl. Math., 32 (1979), 483.

[22]

C. J. Nolan and M. Cheney, Synthetic aperture inversion,, Inverse Problems, 18 (2002), 221. doi: 10.1088/0266-5611/18/1/315.

[23]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging,, J. Fourier Anal. Appl., 10 (2004), 133. doi: 10.1007/s00041-004-8008-0.

[24]

E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331. doi: 10.1090/S0002-9947-1980-0552261-8.

[25]

F. Tréves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. 1 and 2,, Plenum Press, (1980).

[26]

C. E. Yarman, B. Yazıcı and M. Cheney, Bistatic synthetic aperture radar imaging with arbitrary trajectories,, IEEE Transactions on Image Processing, 17 (2008), 84. doi: 10.1109/TIP.2007.911812.

[1]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[2]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[3]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[4]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[5]

Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems & Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831

[6]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

[7]

Kaitlyn Muller. The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging. Inverse Problems & Imaging, 2016, 10 (2) : 549-561. doi: 10.3934/ipi.2016011

[8]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[9]

Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems & Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645

[10]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[11]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[12]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[13]

Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

[14]

Patricio Felmer, Alexander Quaas. Fundamental solutions for a class of Isaacs integral operators. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 493-508. doi: 10.3934/dcds.2011.30.493

[15]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[16]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[17]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[18]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[19]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[20]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]