-
Previous Article
Recovering conductivity at the boundary in three-dimensional electrical impedance tomography
- IPI Home
- This Issue
- Next Article
Non-local regularization of inverse problems
1. | Ceremade, Université Paris-Dauphine, 75775 Paris Cedex 16, France, France |
2. | GREYC, Université de Caen, 14050 Caen Cedex, France |
References:
[1] |
A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering,, ACM Transactions on Graphics, 28 (2009). |
[2] |
J.-F. Aujol, Some first-order algorithms for total variation based image restoration,, J. Math. Imaging Vis., 34 (2009), 307.
doi: 10.1007/s10851-009-0149-y. |
[3] |
J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view,, SIAM Journal on Mathematical Analysis, 42 (2010), 1246.
doi: 10.1137/080743883. |
[4] |
M. Avriel, "Nonlinear Programming: Analysis and Methods,", Dover Publishing, (2003).
|
[5] |
C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels,, IEEE Trans. Image Processing, 10 (2001), 1200.
doi: 10.1109/83.935036. |
[6] |
J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration,, In, IV (2004), 1. |
[7] |
M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting,, In, (2000), 417. |
[8] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Modeling and Simulation, 4 (2005), 490.
doi: 10.1137/040616024. |
[9] |
A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation,", Preprint CMLA 2006-22, (2006), 2006. |
[10] |
A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking,, IEEE Trans. Image Proc., 18 (2009), 1192.
doi: 10.1109/TIP.2009.2017171. |
[11] |
E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406.
doi: 10.1109/TIT.2006.885507. |
[12] |
A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20 (2004), 89.
|
[13] |
T. Chan and J. Shen, Mathematical models for local nontexture inpaintings,, SIAM J. Appl. Math, 62 (2002), 1019.
doi: 10.1137/S0036139900368844. |
[14] |
P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation,", Cambridge University Press, (1989).
|
[15] |
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,, Proc. of the Nat. Ac. of Science, 102 (2005), 7426.
doi: 10.1073/pnas.0500334102. |
[16] |
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Modeling & Simulation, 4 (2005), 1168.
doi: 10.1137/050626090. |
[17] |
A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting,, IEEE Transactions on Image Processing, 13 (2004), 1200.
doi: 10.1109/TIP.2004.833105. |
[18] |
D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection,, Journal of Mult. System and Sig. Proc., 18 (2007), 103.
doi: 10.1007/s11045-007-0018-z. |
[19] |
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413.
doi: 10.1002/cpa.20042. |
[20] |
D. Donoho, Compressed sensing,, IEEE Transactions on Information Theory, 52 (2006), 1289.
doi: 10.1109/TIT.2006.871582. |
[21] |
D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage,, Biometrika, 81 (1994), 425.
doi: 10.1093/biomet/81.3.425. |
[22] |
D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,, Preprint, (2006). |
[23] |
M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples',, In, (2007), 117. |
[24] |
A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling,, In, (1033). |
[25] |
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries,, IEEE Trans. on Image Processing, 15 (2006), 3736.
doi: 10.1109/TIP.2006.881969. |
[26] |
M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA),, Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340.
doi: 10.1016/j.acha.2005.03.005. |
[27] |
A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,, IEEE Tr. on Image Processing, 17 (2008), 1047.
doi: 10.1109/TIP.2008.924284. |
[28] |
G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images,", IMA Preprint Series # 2264, (2264). |
[29] |
M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations,, The Computer Journal, 52 (2009), 64.
doi: 10.1093/comjnl/bxm055. |
[30] |
S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution,, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47.
doi: 10.1002/ima.20007. |
[31] |
W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution,, IEEE Computer Graphics and Applications, 22 (2002), 56.
doi: 10.1109/38.988747. |
[32] |
G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization,", UCLA CAM Report 06-57, (2006), 06. |
[33] |
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation,, SIAM Multiscale Modeling and Simulation, 6 (2007), 595.
doi: 10.1137/060669358. |
[34] |
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005.
|
[35] |
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals,, SIAM Mult. Model. and Simul., 4 (2005), 1091.
doi: 10.1137/050622249. |
[36] |
M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods,, IEEE Signal Processing Letters, 12 (2005), 839.
doi: 10.1109/LSP.2005.859509. |
[37] |
J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration,, IEEE Trans. Image Proc., 17 (2008), 53.
doi: 10.1109/TIP.2007.911828. |
[38] |
F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis,, SIAM Journal on Numer. An., 39 (2001), 1.
|
[39] |
S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition,, Academic Press, (2008).
|
[40] |
S. Masnou, Disocclusion: A variational approach using level lines,, IEEE Trans. Image Processing, 11 (2002), 68.
doi: 10.1109/83.982815. |
[41] |
M. Mignotte, A non-local regularization strategy for image deconvolution,, Pattern Recognition Letters, 29 (2008), 2206.
doi: 10.1016/j.patrec.2008.08.004. |
[42] |
Y. Nesterov, Smooth minimization of non-smooth functions,, Math. Program. Ser. A, 103 (2005), 127.
doi: 10.1007/s10107-004-0552-5. |
[43] |
B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images,, Nature, 381 (1996), 607.
doi: 10.1038/381607a0. |
[44] |
S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview,, IEEE Signal Processing Magazine, 20 (2003), 21.
doi: 10.1109/MSP.2003.1203207. |
[45] |
G. Peyré, Image processing with non-local spectral bases,, SIAM Multiscale Modeling and Simulation, 7 (2008), 703.
doi: 10.1137/07068881X. |
[46] |
G. Peyré, Sparse modeling of textures,, J. Math. Imaging Vis., 34 (2009), 17.
doi: 10.1007/s10851-008-0120-3. |
[47] |
G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems,, In, 5304 (2008), 57. |
[48] |
G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity,, SIAM Journal on Imaging Sciences, (2010).
|
[49] |
M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements,, Commun. on Pure and Appl. Math., 61 (2008), 1025.
doi: 10.1002/cpa.20227. |
[50] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Phys. D, 60 (1992), 259.
doi: 10.1016/0167-2789(92)90242-F. |
[51] |
J. Shanks, Computation of the fast walsh-fourier transform,, IEEE Transactions on Computers, C-18 (1969), 457.
doi: 10.1109/T-C.1969.222685. |
[52] |
S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing,, International Journal of Computer Vision, 23 (1997), 45.
doi: 10.1023/A:1007963824710. |
[53] |
A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds,, IEEE Trans. Image Processing, 16 (2007), 1628.
doi: 10.1109/TIP.2007.894253. |
[54] |
A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes,, Journal of Machine Learning Research, 9 (2008), 1711.
|
[55] |
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images,, In, (1998), 839. |
[56] |
D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications,, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506.
doi: 10.1109/TPAMI.2005.87. |
[57] |
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization,, Journal of Optimization Theory and Applications, 109 (2001), 475.
doi: 10.1023/A:1017501703105. |
[58] |
L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization,, In, (2000), 479. |
[59] |
L. P. Yaroslavsky, "Digital Picture Processing - An Introduction,", Springer, (1985).
|
[60] |
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253.
doi: 10.1137/090746379. |
[61] |
D. Zhou and B. Scholkopf, Regularization on discrete spaces,, In, 3663 (2005), 361. |
show all references
References:
[1] |
A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering,, ACM Transactions on Graphics, 28 (2009). |
[2] |
J.-F. Aujol, Some first-order algorithms for total variation based image restoration,, J. Math. Imaging Vis., 34 (2009), 307.
doi: 10.1007/s10851-009-0149-y. |
[3] |
J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view,, SIAM Journal on Mathematical Analysis, 42 (2010), 1246.
doi: 10.1137/080743883. |
[4] |
M. Avriel, "Nonlinear Programming: Analysis and Methods,", Dover Publishing, (2003).
|
[5] |
C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels,, IEEE Trans. Image Processing, 10 (2001), 1200.
doi: 10.1109/83.935036. |
[6] |
J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration,, In, IV (2004), 1. |
[7] |
M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting,, In, (2000), 417. |
[8] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Modeling and Simulation, 4 (2005), 490.
doi: 10.1137/040616024. |
[9] |
A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation,", Preprint CMLA 2006-22, (2006), 2006. |
[10] |
A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking,, IEEE Trans. Image Proc., 18 (2009), 1192.
doi: 10.1109/TIP.2009.2017171. |
[11] |
E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406.
doi: 10.1109/TIT.2006.885507. |
[12] |
A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20 (2004), 89.
|
[13] |
T. Chan and J. Shen, Mathematical models for local nontexture inpaintings,, SIAM J. Appl. Math, 62 (2002), 1019.
doi: 10.1137/S0036139900368844. |
[14] |
P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation,", Cambridge University Press, (1989).
|
[15] |
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,, Proc. of the Nat. Ac. of Science, 102 (2005), 7426.
doi: 10.1073/pnas.0500334102. |
[16] |
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Modeling & Simulation, 4 (2005), 1168.
doi: 10.1137/050626090. |
[17] |
A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting,, IEEE Transactions on Image Processing, 13 (2004), 1200.
doi: 10.1109/TIP.2004.833105. |
[18] |
D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection,, Journal of Mult. System and Sig. Proc., 18 (2007), 103.
doi: 10.1007/s11045-007-0018-z. |
[19] |
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413.
doi: 10.1002/cpa.20042. |
[20] |
D. Donoho, Compressed sensing,, IEEE Transactions on Information Theory, 52 (2006), 1289.
doi: 10.1109/TIT.2006.871582. |
[21] |
D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage,, Biometrika, 81 (1994), 425.
doi: 10.1093/biomet/81.3.425. |
[22] |
D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,, Preprint, (2006). |
[23] |
M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples',, In, (2007), 117. |
[24] |
A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling,, In, (1033). |
[25] |
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries,, IEEE Trans. on Image Processing, 15 (2006), 3736.
doi: 10.1109/TIP.2006.881969. |
[26] |
M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA),, Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340.
doi: 10.1016/j.acha.2005.03.005. |
[27] |
A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,, IEEE Tr. on Image Processing, 17 (2008), 1047.
doi: 10.1109/TIP.2008.924284. |
[28] |
G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images,", IMA Preprint Series # 2264, (2264). |
[29] |
M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations,, The Computer Journal, 52 (2009), 64.
doi: 10.1093/comjnl/bxm055. |
[30] |
S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution,, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47.
doi: 10.1002/ima.20007. |
[31] |
W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution,, IEEE Computer Graphics and Applications, 22 (2002), 56.
doi: 10.1109/38.988747. |
[32] |
G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization,", UCLA CAM Report 06-57, (2006), 06. |
[33] |
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation,, SIAM Multiscale Modeling and Simulation, 6 (2007), 595.
doi: 10.1137/060669358. |
[34] |
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005.
|
[35] |
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals,, SIAM Mult. Model. and Simul., 4 (2005), 1091.
doi: 10.1137/050622249. |
[36] |
M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods,, IEEE Signal Processing Letters, 12 (2005), 839.
doi: 10.1109/LSP.2005.859509. |
[37] |
J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration,, IEEE Trans. Image Proc., 17 (2008), 53.
doi: 10.1109/TIP.2007.911828. |
[38] |
F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis,, SIAM Journal on Numer. An., 39 (2001), 1.
|
[39] |
S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition,, Academic Press, (2008).
|
[40] |
S. Masnou, Disocclusion: A variational approach using level lines,, IEEE Trans. Image Processing, 11 (2002), 68.
doi: 10.1109/83.982815. |
[41] |
M. Mignotte, A non-local regularization strategy for image deconvolution,, Pattern Recognition Letters, 29 (2008), 2206.
doi: 10.1016/j.patrec.2008.08.004. |
[42] |
Y. Nesterov, Smooth minimization of non-smooth functions,, Math. Program. Ser. A, 103 (2005), 127.
doi: 10.1007/s10107-004-0552-5. |
[43] |
B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images,, Nature, 381 (1996), 607.
doi: 10.1038/381607a0. |
[44] |
S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview,, IEEE Signal Processing Magazine, 20 (2003), 21.
doi: 10.1109/MSP.2003.1203207. |
[45] |
G. Peyré, Image processing with non-local spectral bases,, SIAM Multiscale Modeling and Simulation, 7 (2008), 703.
doi: 10.1137/07068881X. |
[46] |
G. Peyré, Sparse modeling of textures,, J. Math. Imaging Vis., 34 (2009), 17.
doi: 10.1007/s10851-008-0120-3. |
[47] |
G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems,, In, 5304 (2008), 57. |
[48] |
G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity,, SIAM Journal on Imaging Sciences, (2010).
|
[49] |
M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements,, Commun. on Pure and Appl. Math., 61 (2008), 1025.
doi: 10.1002/cpa.20227. |
[50] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Phys. D, 60 (1992), 259.
doi: 10.1016/0167-2789(92)90242-F. |
[51] |
J. Shanks, Computation of the fast walsh-fourier transform,, IEEE Transactions on Computers, C-18 (1969), 457.
doi: 10.1109/T-C.1969.222685. |
[52] |
S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing,, International Journal of Computer Vision, 23 (1997), 45.
doi: 10.1023/A:1007963824710. |
[53] |
A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds,, IEEE Trans. Image Processing, 16 (2007), 1628.
doi: 10.1109/TIP.2007.894253. |
[54] |
A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes,, Journal of Machine Learning Research, 9 (2008), 1711.
|
[55] |
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images,, In, (1998), 839. |
[56] |
D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications,, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506.
doi: 10.1109/TPAMI.2005.87. |
[57] |
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization,, Journal of Optimization Theory and Applications, 109 (2001), 475.
doi: 10.1023/A:1017501703105. |
[58] |
L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization,, In, (2000), 479. |
[59] |
L. P. Yaroslavsky, "Digital Picture Processing - An Introduction,", Springer, (1985).
|
[60] |
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253.
doi: 10.1137/090746379. |
[61] |
D. Zhou and B. Scholkopf, Regularization on discrete spaces,, In, 3663 (2005), 361. |
[1] |
Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037 |
[2] |
Hong Jiang, Wei Deng, Zuowei Shen. Surveillance video processing using compressive sensing. Inverse Problems & Imaging, 2012, 6 (2) : 201-214. doi: 10.3934/ipi.2012.6.201 |
[3] |
Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551 |
[4] |
Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319 |
[5] |
Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487 |
[6] |
Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475 |
[7] |
Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701 |
[8] |
Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465 |
[9] |
Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71 |
[10] |
Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105 |
[11] |
Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653 |
[12] |
A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35 |
[13] |
Michael Herty, Reinhard Illner. Coupling of non-local driving behaviour with fundamental diagrams. Kinetic & Related Models, 2012, 5 (4) : 843-855. doi: 10.3934/krm.2012.5.843 |
[14] |
Nikolai Dokuchaev. On forward and backward SPDEs with non-local boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5335-5351. doi: 10.3934/dcds.2015.35.5335 |
[15] |
Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029 |
[16] |
Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012 |
[17] |
Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete & Continuous Dynamical Systems - A, 2018, 0 (0) : 1-17. doi: 10.3934/dcds.2018154 |
[18] |
Sanda Cleja-Ţigoiu, Raisa Paşcan. Non-local elasto-viscoplastic models with dislocations and non-Schmid effect. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1621-1639. doi: 10.3934/dcdss.2013.6.1621 |
[19] |
Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445 |
[20] |
Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741 |
2016 Impact Factor: 1.094
Tools
Metrics
Other articles
by authors
[Back to Top]