May  2010, 4(2): 311-333. doi: 10.3934/ipi.2010.4.311

Detection of shape deformities using Yamabe flow and Beltrami coefficients

1. 

Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02143, United States, United States

2. 

Department of Mathematics, UCLA, 520 Portola Plaza, Math Sciences Building 6363, Los Angeles, CA 90095, United States, United States

3. 

Department of Computer Sciences, Computer Science Building, State University of New York at Stony Brook, Stony Brook, New York 11794-4400, United States

4. 

Department of Computer Sciences, Room 2425, Computer Science Building, State University of New York at Stony Brook, Stony Brook, New York 11794-4400, United States

5. 

Lab of Neuro Imaging UCLA School of Medicine, 635 Charles E. Young Drive South Suite 225E, Los Angeles, CA 90095-7332, United States

Received  March 2009 Revised  November 2009 Published  May 2010

We address the problem of detecting deformities on elastic surfaces. This is of great importance for shape analysis, with applications such as detecting abnormalities in biological shapes (e.g., brain structures). We propose an effective algorithm to detect abnormal deformations by generating quasi-conformal maps between the original and deformed surfaces. We firstly flatten the 3D surfaces conformally onto 2D rectangles using the discrete Yamabe flow and use them to compute a quasi-conformal map that matches internal features lying within the surfaces. The deformities on the elastic surface are formulated as non-conformal deformations, whereas normal deformations that preserve local geometry are formulated as conformal deformations. We then detect abnormalities by computing the Beltrami coefficient associated uniquely with the quasi-conformal map. The Beltrami coefficient is a complex-valued function defined on the surface. It describes the deviation of the deformation from conformality at each point. By considering the norm of the Beltrami coefficient, we can effectively segment the regions of abnormal changes, which are invariant under normal (non-rigid) deformations that preserve local geometry. Furthermore, by considering the argument of the Beltrami coefficient, we can capture abnormalities induced by local rotational changes. We tested the algorithm by detecting abnormalities on synthetic surfaces, 3D human face data and MRI-derived brain surfaces. Experimental results show that our algorithm can effectively detect abnormalities and capture local rotational alterations. Our method is also more effective than other existing methods, such as the isometric indicator, for locating abnormalities.
Citation: Lok Ming Lui, Tsz Wai Wong, Wei Zeng, Xianfeng Gu, Paul M. Thompson, Tony F. Chan, Shing Tung Yau. Detection of shape deformities using Yamabe flow and Beltrami coefficients. Inverse Problems & Imaging, 2010, 4 (2) : 311-333. doi: 10.3934/ipi.2010.4.311
[1]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[2]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[3]

Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151

[4]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Period doubling and reducibility in the quasi-periodically forced logistic map. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1507-1535. doi: 10.3934/dcdsb.2012.17.1507

[5]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[6]

Zuxing Xuan. On conformal measures of parabolic meromorphic functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 249-257. doi: 10.3934/dcdsb.2015.20.249

[7]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[8]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[9]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[10]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[11]

Hans Henrik Rugh. On dimensions of conformal repellers. Randomness and parameter dependency. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2553-2564. doi: 10.3934/dcds.2012.32.2553

[12]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[13]

Rossen I. Ivanov. Conformal and Geometric Properties of the Camassa-Holm Hierarchy. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 545-554. doi: 10.3934/dcds.2007.19.545

[14]

Juan Wang, Yongluo Cao, Yun Zhao. Dimension estimates in non-conformal setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3847-3873. doi: 10.3934/dcds.2014.34.3847

[15]

Marcelo M. Disconzi. On the existence of solutions and causality for relativistic viscous conformal fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1567-1599. doi: 10.3934/cpaa.2019075

[16]

Robert Eymard, Angela Handlovičová, Karol Mikula. Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes. Communications on Pure & Applied Analysis, 2012, 11 (1) : 147-172. doi: 10.3934/cpaa.2012.11.147

[17]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[18]

Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

[19]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

[20]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (7)

[Back to Top]