• Previous Article
    A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data
  • IPI Home
  • This Issue
  • Next Article
    Three-dimensional dental X-ray imaging by combination of panoramic and projection data
May  2010, 4(2): 241-255. doi: 10.3934/ipi.2010.4.241

Level set based brain aneurysm capturing in 3D

1. 

Department of Mathematics, University of California Los Angeles, CA 90095, United States, United States, United States

2. 

Division of Interventional Neuroradiology, David Geffen School of Medicine, University of California Los Angeles, 10833 LeConte Ave, Los Angeles, CA, United States, United States

3. 

Department of Mathematics, University of California, Los Angeles, CA 90095, United States

Received  February 2009 Revised  September 2009 Published  May 2010

Brain aneurysm rupture has been reported to be closely related to aneurysm size. The current method used to determine aneurysm size is to measure the dimension of the aneurysm dome and the width of the aneurysm neck. Since aneurysms usually have complicated shapes, using just the size of the aneurysm dome and neck may not be accurate and may overlook important geometrical information. In this paper we present a level set based surface capturing algorithm to first capture the aneurysms from the vascular tree. Since aneurysms are described by level set functions, volumes, curvatures and other geometric quantities of the aneurysm surface can easily be computed for medical studies. Experiments and comparisons with models used for capturing illusory contours in 2D images are performed. Applications to medical images are also presented to show the accuracy, consistency and robustness of our method in capturing brain aneurysms and volume quantification.
Citation: Bin Dong, Aichi Chien, Yu Mao, Jian Ye, Fernando Vinuela, Stanley Osher. Level set based brain aneurysm capturing in 3D. Inverse Problems & Imaging, 2010, 4 (2) : 241-255. doi: 10.3934/ipi.2010.4.241
[1]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems & Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[2]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[3]

Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165

[4]

Alberto M. Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Mathematical Biosciences & Engineering, 2011, 8 (2) : 409-423. doi: 10.3934/mbe.2011.8.409

[5]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[6]

Lok Ming Lui, Yalin Wang, Tony F. Chan, Paul M. Thompson. Brain anatomical feature detection by solving partial differential equations on general manifolds. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 605-618. doi: 10.3934/dcdsb.2007.7.605

[7]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[8]

Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010

[9]

Wenxiong Chen, Congming Li. Some new approaches in prescribing gaussian and salar curvature. Conference Publications, 1998, 1998 (Special) : 148-159. doi: 10.3934/proc.1998.1998.148

[10]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-28. doi: 10.3934/dcds.2019243

[11]

Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure & Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311

[12]

Wei Zhu. A numerical study of a mean curvature denoising model using a novel augmented Lagrangian method. Inverse Problems & Imaging, 2017, 11 (6) : 975-996. doi: 10.3934/ipi.2017045

[13]

Chiara Corsato, Colette De Coster, Franco Obersnel, Pierpaolo Omari, Alessandro Soranzo. A prescribed anisotropic mean curvature equation modeling the corneal shape: A paradigm of nonlinear analysis. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 213-256. doi: 10.3934/dcdss.2018013

[14]

G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11.

[15]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[16]

Georgi I. Kamberov. Recovering the shape of a surface from the mean curvature. Conference Publications, 1998, 1998 (Special) : 353-359. doi: 10.3934/proc.1998.1998.353

[17]

Brittany Froese Hamfeldt. Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature. Communications on Pure & Applied Analysis, 2018, 17 (2) : 671-707. doi: 10.3934/cpaa.2018036

[18]

Alessio Pomponio. Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3899-3911. doi: 10.3934/dcds.2018169

[19]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[20]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

[Back to Top]