• Previous Article
    Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem
  • IPI Home
  • This Issue
  • Next Article
    On the regularization of the inverse conductivity problem with discontinuous conductivities
August  2008, 2(3): 373-395. doi: 10.3934/ipi.2008.2.373

Why linear sampling really seems to work

1. 

Institute of Mathematics, Johannes Gutenberg-Universität, 55099 Mainz, Germany

Received  June 2008 Revised  June 2008 Published  July 2008

We reconsider the Linear Sampling Method by Colton and Kirsch, and provide an analysis which may serve as a justification of the method for problems where the Factorization Method is known to work. As a by-product, however, we obtain convincing arguments that one popular implementation of the Linear Sampling Method may not be as robust as is commonly believed. Our approach stems from the theory of regularization methods for linear ill-posed operator equations. More precisely, we derive a novel asymptotic analysis of the Tikhonov method if the exact right-hand side is inconsistent, i.e., does not belong to the (dense) range of the corresponding operator. It appears possible that our results can be a starting point to derive a calibration of standard implementations of the Linear Sampling Method, in order to obtain reconstructions of the scattering obstacles that go beyond an approximate localization of their respective positions.
Citation: Martin Hanke. Why linear sampling really seems to work. Inverse Problems & Imaging, 2008, 2 (3) : 373-395. doi: 10.3934/ipi.2008.2.373
References:
[1]

T. Arens, Why linear sampling works,, Inverse Problems, 20 (2004), 163. doi: 10.1088/0266-5611/20/1/010. Google Scholar

[2]

T. Arens and A. Lechleiter, "The Linear Sampling Method Revisited,", manuscript, (2007). Google Scholar

[3]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory: An Introduction," Interaction of Mechanics and Mathematics,, Springer-Verlag, (2006). Google Scholar

[4]

A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity,, Inverse Problems, 18 (2002), 547. doi: 10.1088/0266-5611/18/3/303. Google Scholar

[5]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003. Google Scholar

[6]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," 2nd Ed.,, Applied Mathematical Sciences, (1998). Google Scholar

[7]

D. Colton and P. Monk, A linear sampling method for the detection of leukemia using microwaves II,, SIAM J. Appl. Math., 60 (1999), 241. doi: 10.1137/S003613999834426X. Google Scholar

[8]

D. Colton, M. Piani and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems,, Inverse Problems, 13 (1997), 1477. doi: 10.1088/0266-5611/13/6/005. Google Scholar

[9]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,", Mathematics and its Applications, 375 (1996). Google Scholar

[10]

B. Gebauer, M. Hanke, A. Kirsch, W. Muniz and C. Schneider, A sampling method for detecting buried objects using electromagnetic scattering,, Inverse Problems, 21 (2005), 2035. doi: 10.1088/0266-5611/21/6/015. Google Scholar

[11]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products," 7th Ed.,, Academic Press, (2007). Google Scholar

[12]

C. W. Groetsch, "The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind,", Research Notes in Mathematics, 105 (1984). Google Scholar

[13]

H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse medium problem,, Inverse Problems, 18 (2002), 891. doi: 10.1088/0266-5611/18/3/323. Google Scholar

[14]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009. Google Scholar

[15]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems,", Oxford University Press, (2008). Google Scholar

[16]

P. Monk, "Finite Element Methods for Maxwell's Equations,", Numerical Mathematics and Scientific Computation. Oxford University Press, (2003). Google Scholar

[17]

V. A. Morozov, On the solution of functional equations by the method of regularization,, Dokl. Akad. Nauk SSSR, 7 (1966), 510. Google Scholar

[18]

V. A. Morozov, "Methods for Solving Incorrectly Posed Problems,", Translated from the Russian by A. B. Aries. Translation edited by Z. Nashed. Springer-Verlag, (1984). Google Scholar

[19]

S. Nintcheu Fata and B. B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics,, Inverse Problems, 20 (2004), 713. doi: 10.1088/0266-5611/20/3/005. Google Scholar

[20]

A. Tacchino, J. Coyle and M. Piana, Numerical validation of the linear sampling method,, Inverse Problems, 18 (2002), 511. doi: 10.1088/0266-5611/18/3/301. Google Scholar

[21]

G. M. Vainikko, The discrepancy principle for a class of regularization methods,, USSR Comp. Math. Math. Phys., 22 (1982), 1. doi: 10.1016/0041-5553(82)90120-3. Google Scholar

[22]

G. M. Vainikko, The critical level of discrepancy in regularization methods,, USSR Comp. Math. Math. Phys., 23 (1983), 1. doi: 10.1016/S0041-5553(83)80068-8. Google Scholar

show all references

References:
[1]

T. Arens, Why linear sampling works,, Inverse Problems, 20 (2004), 163. doi: 10.1088/0266-5611/20/1/010. Google Scholar

[2]

T. Arens and A. Lechleiter, "The Linear Sampling Method Revisited,", manuscript, (2007). Google Scholar

[3]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory: An Introduction," Interaction of Mechanics and Mathematics,, Springer-Verlag, (2006). Google Scholar

[4]

A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity,, Inverse Problems, 18 (2002), 547. doi: 10.1088/0266-5611/18/3/303. Google Scholar

[5]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003. Google Scholar

[6]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," 2nd Ed.,, Applied Mathematical Sciences, (1998). Google Scholar

[7]

D. Colton and P. Monk, A linear sampling method for the detection of leukemia using microwaves II,, SIAM J. Appl. Math., 60 (1999), 241. doi: 10.1137/S003613999834426X. Google Scholar

[8]

D. Colton, M. Piani and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems,, Inverse Problems, 13 (1997), 1477. doi: 10.1088/0266-5611/13/6/005. Google Scholar

[9]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,", Mathematics and its Applications, 375 (1996). Google Scholar

[10]

B. Gebauer, M. Hanke, A. Kirsch, W. Muniz and C. Schneider, A sampling method for detecting buried objects using electromagnetic scattering,, Inverse Problems, 21 (2005), 2035. doi: 10.1088/0266-5611/21/6/015. Google Scholar

[11]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products," 7th Ed.,, Academic Press, (2007). Google Scholar

[12]

C. W. Groetsch, "The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind,", Research Notes in Mathematics, 105 (1984). Google Scholar

[13]

H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse medium problem,, Inverse Problems, 18 (2002), 891. doi: 10.1088/0266-5611/18/3/323. Google Scholar

[14]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009. Google Scholar

[15]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems,", Oxford University Press, (2008). Google Scholar

[16]

P. Monk, "Finite Element Methods for Maxwell's Equations,", Numerical Mathematics and Scientific Computation. Oxford University Press, (2003). Google Scholar

[17]

V. A. Morozov, On the solution of functional equations by the method of regularization,, Dokl. Akad. Nauk SSSR, 7 (1966), 510. Google Scholar

[18]

V. A. Morozov, "Methods for Solving Incorrectly Posed Problems,", Translated from the Russian by A. B. Aries. Translation edited by Z. Nashed. Springer-Verlag, (1984). Google Scholar

[19]

S. Nintcheu Fata and B. B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics,, Inverse Problems, 20 (2004), 713. doi: 10.1088/0266-5611/20/3/005. Google Scholar

[20]

A. Tacchino, J. Coyle and M. Piana, Numerical validation of the linear sampling method,, Inverse Problems, 18 (2002), 511. doi: 10.1088/0266-5611/18/3/301. Google Scholar

[21]

G. M. Vainikko, The discrepancy principle for a class of regularization methods,, USSR Comp. Math. Math. Phys., 22 (1982), 1. doi: 10.1016/0041-5553(82)90120-3. Google Scholar

[22]

G. M. Vainikko, The critical level of discrepancy in regularization methods,, USSR Comp. Math. Math. Phys., 23 (1983), 1. doi: 10.1016/S0041-5553(83)80068-8. Google Scholar

[1]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[2]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[3]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[4]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[5]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[6]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[7]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[8]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[9]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[10]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[11]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[12]

Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563

[13]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[14]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[15]

Pedro Serranho. A hybrid method for inverse scattering for Sound-soft obstacles in R3. Inverse Problems & Imaging, 2007, 1 (4) : 691-712. doi: 10.3934/ipi.2007.1.691

[16]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[17]

Dinh-Liem Nguyen. The factorization method for the Drude-Born-Fedorov model for periodic chiral structures. Inverse Problems & Imaging, 2016, 10 (2) : 519-547. doi: 10.3934/ipi.2016010

[18]

Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547

[19]

Lorenzo Audibert. The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary. Inverse Problems & Imaging, 2017, 11 (6) : 1107-1119. doi: 10.3934/ipi.2017051

[20]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]