2008, 2(2): 225-250. doi: 10.3934/ipi.2008.2.225

Enhanced imaging from multiply scattered waves

1. 

Department of Mathematics and Statistics, University of Limerick, Castletroy, Limerick, Ireland

2. 

Department of Mathematics and Statistics, University of Limerick, Castletroy, Limeric, Ireland

Received  September 2007 Revised  December 2007 Published  April 2008

Many imaging methods involve probing a material with a wave and observing the back-scattered wave. The back-scattered wave measurements are used to compute an image of the internal structure of the material. Many of the conventional methods make the assumption that the wave has scattered just once from the region to be imaged before returning to the sensor to be recorded. The purpose of this paper is to show how this restriction can be partially removed and also how its removal leads to an enhanced image, free of the artifacts often associated with the conventionally reconstructed image.
Citation: Romina Gaburro, Clifford J Nolan. Enhanced imaging from multiply scattered waves. Inverse Problems & Imaging, 2008, 2 (2) : 225-250. doi: 10.3934/ipi.2008.2.225
References:
[1]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform,, J. Math. Phys., 26 (1985), 99. doi: 10.1063/1.526755.

[2]

G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustic and elasticity,, Wave Motion, 12 (1990), 15. doi: 10.1016/0165-2125(90)90017-X.

[3]

N. Bleistein, J. K. Cohen and J. W. Stockwell, "The Matematics of Multidimensional Seismic Inversion,", Springer-Verlag, (2000).

[4]

M. Cheney, A mathematical tutorial on synthetic aperture radar,, SIAM Review, 43 (2001), 301. doi: 10.1137/S0036144500368859.

[5]

M. Cheney and R. J. Bonneau, Imaging that exploits multipath scattering from point scatterers,, Inverse Problems, 20 (2004), 1691. doi: 10.1088/0266-5611/20/5/023.

[6]

J. J. Duistermaat, "Fourier Integral Operators. Progress in Mathematics, 130, ", Birkhauser, (1996).

[7]

R. Gaburro, C. J. Nolan, T. Dowling and M. Cheney, Imaging from multiply scattered waves,, Proc. SPIE 6513, (2007). doi: 10.1117/12.712569.

[8]

A. Grigis and J. Sjöstrand, "Microlocal Analysis for Differential Operators: an Introduction,", London Mathematical Sciety Lecture Note Series, 196 (1994).

[9]

G. T. Herman, H. K. Tuy, K. J. Langenberg and P. C. Sabatier, "Basic Methods of Tomography and Inverse Problems,", Adam Hilger, (1988).

[10]

P. Morse and H. Feshbach, "Methods of Theoretical Physics," Vol. 1,, McGraw-Hill, (1953).

[11]

C. J. Nolan, Scattering near a fold caustic,, SIAM J. of Appl. Math, 61 (2000), 659. doi: 10.1137/S0036139999356107.

[12]

C. J. Nolan and M. Cheney, Synthetic aperture inversion for arbitrary flight paths and non-flat topography,, IEEE Trans. on Image Processing, 12 (2003), 1035. doi: 10.1109/TIP.2003.814243.

[13]

C. J. Nolan and M. Cheney, Synthetic aperture inversion,, Inverse Problems, 18 (2002), 221. doi: 10.1088/0266-5611/18/1/315.

[14]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging,, J. Fourier Analysis and its Applications, 10 (2004), 133.

[15]

C. J. Nolan, M. Cheney, T. Dowling and R. Gaburro, Enhanced angular resolution from multiply scattered waves,, Inverse Problems, 22 (2006), 1817. doi: 10.1088/0266-5611/22/5/017.

[16]

C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the acoustic wave equation,, Comm. in PDE, 22 (1997), 919. doi: 10.1080/03605309708821289.

[17]

M. Soumekh, Bistatic synthetic aperture radar inversion with application in dynamic object imaging,, IEEE Trans. on Signal Processing, 39 (1991), 2044. doi: 10.1109/78.134436.

[18]

X. Saint Raymond, "Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics,", CRC Press, (1991).

[19]

F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. Iand II,, Plenum Press, (1980).

[20]

L. M. H. Ulander and P. O. Frölund, Ultra-wideband SAR interferometry,, IEEE Trans. Geosci. Remote Sensing, 36 (1998), 1540. doi: 10.1109/36.718858.

[21]

L. M. H. Ulander and H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging,, in Proce. Conf. SPIE 13th Annu. Int. Symp. Aerosense, (1999).

[22]

C. E. Yarman, B. Yazici and M. Cheney, Bistatic synthetic aperture radar imaging for arbitrary flight trajectories,, submitted to IEEE-TIP, (2007).

show all references

References:
[1]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform,, J. Math. Phys., 26 (1985), 99. doi: 10.1063/1.526755.

[2]

G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustic and elasticity,, Wave Motion, 12 (1990), 15. doi: 10.1016/0165-2125(90)90017-X.

[3]

N. Bleistein, J. K. Cohen and J. W. Stockwell, "The Matematics of Multidimensional Seismic Inversion,", Springer-Verlag, (2000).

[4]

M. Cheney, A mathematical tutorial on synthetic aperture radar,, SIAM Review, 43 (2001), 301. doi: 10.1137/S0036144500368859.

[5]

M. Cheney and R. J. Bonneau, Imaging that exploits multipath scattering from point scatterers,, Inverse Problems, 20 (2004), 1691. doi: 10.1088/0266-5611/20/5/023.

[6]

J. J. Duistermaat, "Fourier Integral Operators. Progress in Mathematics, 130, ", Birkhauser, (1996).

[7]

R. Gaburro, C. J. Nolan, T. Dowling and M. Cheney, Imaging from multiply scattered waves,, Proc. SPIE 6513, (2007). doi: 10.1117/12.712569.

[8]

A. Grigis and J. Sjöstrand, "Microlocal Analysis for Differential Operators: an Introduction,", London Mathematical Sciety Lecture Note Series, 196 (1994).

[9]

G. T. Herman, H. K. Tuy, K. J. Langenberg and P. C. Sabatier, "Basic Methods of Tomography and Inverse Problems,", Adam Hilger, (1988).

[10]

P. Morse and H. Feshbach, "Methods of Theoretical Physics," Vol. 1,, McGraw-Hill, (1953).

[11]

C. J. Nolan, Scattering near a fold caustic,, SIAM J. of Appl. Math, 61 (2000), 659. doi: 10.1137/S0036139999356107.

[12]

C. J. Nolan and M. Cheney, Synthetic aperture inversion for arbitrary flight paths and non-flat topography,, IEEE Trans. on Image Processing, 12 (2003), 1035. doi: 10.1109/TIP.2003.814243.

[13]

C. J. Nolan and M. Cheney, Synthetic aperture inversion,, Inverse Problems, 18 (2002), 221. doi: 10.1088/0266-5611/18/1/315.

[14]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging,, J. Fourier Analysis and its Applications, 10 (2004), 133.

[15]

C. J. Nolan, M. Cheney, T. Dowling and R. Gaburro, Enhanced angular resolution from multiply scattered waves,, Inverse Problems, 22 (2006), 1817. doi: 10.1088/0266-5611/22/5/017.

[16]

C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the acoustic wave equation,, Comm. in PDE, 22 (1997), 919. doi: 10.1080/03605309708821289.

[17]

M. Soumekh, Bistatic synthetic aperture radar inversion with application in dynamic object imaging,, IEEE Trans. on Signal Processing, 39 (1991), 2044. doi: 10.1109/78.134436.

[18]

X. Saint Raymond, "Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics,", CRC Press, (1991).

[19]

F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. Iand II,, Plenum Press, (1980).

[20]

L. M. H. Ulander and P. O. Frölund, Ultra-wideband SAR interferometry,, IEEE Trans. Geosci. Remote Sensing, 36 (1998), 1540. doi: 10.1109/36.718858.

[21]

L. M. H. Ulander and H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging,, in Proce. Conf. SPIE 13th Annu. Int. Symp. Aerosense, (1999).

[22]

C. E. Yarman, B. Yazici and M. Cheney, Bistatic synthetic aperture radar imaging for arbitrary flight trajectories,, submitted to IEEE-TIP, (2007).

[1]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[2]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[3]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[4]

Joost R. Santos. Interdependency analysis with multiple probabilistic sector inputs. Journal of Industrial & Management Optimization, 2008, 4 (3) : 489-510. doi: 10.3934/jimo.2008.4.489

[5]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[6]

Evelyn K. Thomas, Katharine F. Gurski, Kathleen A. Hoffman. Analysis of SI models with multiple interacting populations using subpopulations. Mathematical Biosciences & Engineering, 2015, 12 (1) : 135-161. doi: 10.3934/mbe.2015.12.135

[7]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[8]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[9]

Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659

[10]

Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89

[11]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[12]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[13]

Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure & Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347

[14]

Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems & Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169

[15]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018125

[16]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

[17]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[18]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[19]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[20]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]