2007, 1(3): 507-523. doi: 10.3934/ipi.2007.1.507

Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications

1. 

Department of Computer Science,University of Innsbruck, Technikerstrasse 21a, A-6020 Innsbruck, Austria

2. 

Department of Mathematics, Federal University of St. Catarina, P.O. Box 476, 88040-900 Florianópolis

Received  February 2007 Published  July 2007

In part I we introduced modified Landweber--Kaczmarz methods and established a convergence analysis. In the present work we investigate three applications: an inverse problem related to thermoacoustic tomography, a nonlinear inverse problem for semiconductor equations, and a nonlinear problem in Schlieren tomography. Each application is considered in the framework established in the previous part. The novel algorithms show robustness, stability, computational efficiency and high accuracy.
Citation: Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507
[1]

Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335

[2]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[3]

Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Problems & Imaging, 2007, 1 (2) : 289-298. doi: 10.3934/ipi.2007.1.289

[4]

Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems & Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047

[5]

Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011

[6]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[7]

Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2011, 5 (1) : 1-17. doi: 10.3934/ipi.2011.5.1

[8]

Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479

[9]

Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An inner-outer regularizing method for ill-posed problems. Inverse Problems & Imaging, 2014, 8 (2) : 409-420. doi: 10.3934/ipi.2014.8.409

[10]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[11]

Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293

[12]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[13]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[14]

Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499

[15]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[16]

Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971

[17]

Stefan Kindermann, Antonio Leitão. Convergence rates for Kaczmarz-type regularization methods. Inverse Problems & Imaging, 2014, 8 (1) : 149-172. doi: 10.3934/ipi.2014.8.149

[18]

Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems & Imaging, 2015, 9 (2) : 395-413. doi: 10.3934/ipi.2015.9.395

[19]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[20]

Plamen Stefanov, Yang Yang. Multiwave tomography with reflectors: Landweber's iteration. Inverse Problems & Imaging, 2017, 11 (2) : 373-401. doi: 10.3934/ipi.2017018

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (18)

[Back to Top]