April 2018, 25: 16-26. doi: 10.3934/era.2018.25.003

Signatures, sums of hermitian squares and positive cones on algebras with involution

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

Received  October 23, 2017 Published  April 2018

We provide a coherent picture of our efforts thus far in extending real algebra and its links to the theory of quadratic forms over ordered fields in the noncommutative direction, using hermitian forms and "ordered" algebras with involution.

Citation: Vincent Astier, Thomas Unger. Signatures, sums of hermitian squares and positive cones on algebras with involution. Electronic Research Announcements, 2018, 25: 16-26. doi: 10.3934/era.2018.25.003
References:
[1]

A. A. Albert, Involutorial simple algebras and real Riemann matrices, Ann. of Math. (2), 36(1935), 886–964. doi: 10.2307/1968595.

[2]

E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 100-115. doi: 10.1007/BF02952513.

[3]

E. Artin and O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 85-99. doi: 10.1007/BF02952512.

[4]

V. Astier and T. Unger, Signatures of hermitian forms and the Knebusch trace formula, Math. Ann., 358 (2014), 925-947. doi: 10.1007/s00208-013-0977-3.

[5]

V. Astier and T. Unger, Signatures of hermitian forms and "prime ideals" of Witt groups, Adv. Math., 285 (2015), 497-514. doi: 10.1016/j.aim.2015.07.035.

[6]

V. Astier and T. Unger, Positive cones on algebras with involution, preprint, 2017, arXiv: 1609.06601.

[7]

V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher, preprint, 2016, arXiv: 1511.06330.

[8]

V. Astier and T. Unger, Signatures, sums of hermitian squares and positive cones on algebras with involution, Séminaire de Structures Algébriques Ordonnées 2015–2016, 91 (2017).

[9]

V. Astier and T. Unger, Stability index of algebras with involution, Contemporary Mathematics, 697 (2017), 41-50. doi: 10.1090/conm/697/14045.

[10]

A. AuelE. BrusselS. Garibaldi and U. Vishne, Open problems on central simple algebras, Transform. Groups, 16 (2011), 219-264. doi: 10.1007/s00031-011-9119-8.

[11]

E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2), 147 (1998), 651–693. doi: 10.2307/120961.

[12]

J. Bochnak, M. Coste and M. -F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03718-8.

[13]

T. C. Craven, Orderings, valuations, and Hermitian forms over *-fields, in K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 2, American Mathematical Society, Providence, RI, (1995), 149–160.

[14]

T. C. Craven, Valuations and Hermitian forms on skew fields, in Valuation Theory and its Applications, Vol. I (Saskatoon, SK, 1999), Fields Inst. Commun., 32, American Mathematical Society, Providence, RI, (2002), 103–115.

[15]

D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., (1900), 253-297.

[16]

M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60. doi: 10.1090/S0002-9947-1969-0251026-X.

[17]

I. Klep and T. Unger, The Procesi-Schacher conjecture and Hilbert's 17th problem for algebras with involution, J. Algebra, 324 (2010), 256-268. doi: 10.1016/j.jalgebra.2010.03.022.

[18]

M. -A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, vol. 294, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-75401-2.

[19]

M. -A. Knus, A. Merkurjev, M. Rost and J. -P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. doi: 10.1090/coll/044.

[20]

T. Y. Lam, An introduction to real algebra, in Ordered Fields and real Algebraic Geometry (Boulder, Colo., 1983), Rocky Mountain J. Math., 14 (1984), 767–814. doi: 10.1216/RMJ-1984-14-4-767.

[21]

T. Y. Lam, Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005.

[22]

D. W. Lewis and J.-P. Tignol, On the signature of an involution, Arch. Math. (Basel), 60 (1993), 128-135. doi: 10.1007/BF01199098.

[23]

D. W. Lewis and T. Unger, A local-global principle for algebras with involution and Hermitian forms, Math. Z., 244 (2003), 469-477. doi: 10.1007/s00209-003-0490-6.

[24]

D. W. Lewis and T. Unger, Hermitian Morita theory: A matrix approach, Irish Math. Soc. Bull., 62 (2008), 37-41.

[25]

F. Lorenz and J. Leicht, Die Primideale des Wittschen Ringes, Invent. Math., 10 (1970), 82-88. doi: 10.1007/BF01402972.

[26]

A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math., 1 (1966), 116-132. doi: 10.1007/BF01389724.

[27]

A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z., 133 (1973), 319-342. doi: 10.1007/BF01177872.

[28]

A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics, vol. 1093, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0101548.

[29]

C. Procesi and M. Schacher, A non-commutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. (2), 104 (1976), 395–406. doi: 10.2307/1970962.

[30]

A. Quéguiner, Signature des involutions de deuxiéme espéce, Arch. Math. (Basel), 65 (1995), 408-412. doi: 10.1007/BF01198071.

[31]

W. Scharlau, Induction theorems and the structure of the Witt group, Invent. Math., 11 (1970), 37-44. doi: 10.1007/BF01389804.

[32]

W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, vol. 270, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-642-69971-9.

[33]

J. J. Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares, Philosophical Magazine, 4 (1852), 138-142. doi: 10.1080/14786445208647087.

[34]

J. -P. Tignol, Algebras with involution and classical groups, in European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., vol. 169, Birkhäuser, Basel, (1998), 244–258.

[35]

A. Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.), 24 (1961), 589-623.

show all references

References:
[1]

A. A. Albert, Involutorial simple algebras and real Riemann matrices, Ann. of Math. (2), 36(1935), 886–964. doi: 10.2307/1968595.

[2]

E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 100-115. doi: 10.1007/BF02952513.

[3]

E. Artin and O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 85-99. doi: 10.1007/BF02952512.

[4]

V. Astier and T. Unger, Signatures of hermitian forms and the Knebusch trace formula, Math. Ann., 358 (2014), 925-947. doi: 10.1007/s00208-013-0977-3.

[5]

V. Astier and T. Unger, Signatures of hermitian forms and "prime ideals" of Witt groups, Adv. Math., 285 (2015), 497-514. doi: 10.1016/j.aim.2015.07.035.

[6]

V. Astier and T. Unger, Positive cones on algebras with involution, preprint, 2017, arXiv: 1609.06601.

[7]

V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher, preprint, 2016, arXiv: 1511.06330.

[8]

V. Astier and T. Unger, Signatures, sums of hermitian squares and positive cones on algebras with involution, Séminaire de Structures Algébriques Ordonnées 2015–2016, 91 (2017).

[9]

V. Astier and T. Unger, Stability index of algebras with involution, Contemporary Mathematics, 697 (2017), 41-50. doi: 10.1090/conm/697/14045.

[10]

A. AuelE. BrusselS. Garibaldi and U. Vishne, Open problems on central simple algebras, Transform. Groups, 16 (2011), 219-264. doi: 10.1007/s00031-011-9119-8.

[11]

E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2), 147 (1998), 651–693. doi: 10.2307/120961.

[12]

J. Bochnak, M. Coste and M. -F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03718-8.

[13]

T. C. Craven, Orderings, valuations, and Hermitian forms over *-fields, in K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 2, American Mathematical Society, Providence, RI, (1995), 149–160.

[14]

T. C. Craven, Valuations and Hermitian forms on skew fields, in Valuation Theory and its Applications, Vol. I (Saskatoon, SK, 1999), Fields Inst. Commun., 32, American Mathematical Society, Providence, RI, (2002), 103–115.

[15]

D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., (1900), 253-297.

[16]

M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60. doi: 10.1090/S0002-9947-1969-0251026-X.

[17]

I. Klep and T. Unger, The Procesi-Schacher conjecture and Hilbert's 17th problem for algebras with involution, J. Algebra, 324 (2010), 256-268. doi: 10.1016/j.jalgebra.2010.03.022.

[18]

M. -A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, vol. 294, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-75401-2.

[19]

M. -A. Knus, A. Merkurjev, M. Rost and J. -P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. doi: 10.1090/coll/044.

[20]

T. Y. Lam, An introduction to real algebra, in Ordered Fields and real Algebraic Geometry (Boulder, Colo., 1983), Rocky Mountain J. Math., 14 (1984), 767–814. doi: 10.1216/RMJ-1984-14-4-767.

[21]

T. Y. Lam, Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005.

[22]

D. W. Lewis and J.-P. Tignol, On the signature of an involution, Arch. Math. (Basel), 60 (1993), 128-135. doi: 10.1007/BF01199098.

[23]

D. W. Lewis and T. Unger, A local-global principle for algebras with involution and Hermitian forms, Math. Z., 244 (2003), 469-477. doi: 10.1007/s00209-003-0490-6.

[24]

D. W. Lewis and T. Unger, Hermitian Morita theory: A matrix approach, Irish Math. Soc. Bull., 62 (2008), 37-41.

[25]

F. Lorenz and J. Leicht, Die Primideale des Wittschen Ringes, Invent. Math., 10 (1970), 82-88. doi: 10.1007/BF01402972.

[26]

A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math., 1 (1966), 116-132. doi: 10.1007/BF01389724.

[27]

A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z., 133 (1973), 319-342. doi: 10.1007/BF01177872.

[28]

A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics, vol. 1093, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0101548.

[29]

C. Procesi and M. Schacher, A non-commutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. (2), 104 (1976), 395–406. doi: 10.2307/1970962.

[30]

A. Quéguiner, Signature des involutions de deuxiéme espéce, Arch. Math. (Basel), 65 (1995), 408-412. doi: 10.1007/BF01198071.

[31]

W. Scharlau, Induction theorems and the structure of the Witt group, Invent. Math., 11 (1970), 37-44. doi: 10.1007/BF01389804.

[32]

W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, vol. 270, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-642-69971-9.

[33]

J. J. Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares, Philosophical Magazine, 4 (1852), 138-142. doi: 10.1080/14786445208647087.

[34]

J. -P. Tignol, Algebras with involution and classical groups, in European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., vol. 169, Birkhäuser, Basel, (1998), 244–258.

[35]

A. Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.), 24 (1961), 589-623.

[1]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[2]

Yang Cao, Wei- Wei Tan, Mei-Qun Jiang. A generalization of the positive-definite and skew-Hermitian splitting iteration. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 811-821. doi: 10.3934/naco.2012.2.811

[3]

Ian Blake, V. Kumar Murty, Hamid Usefi. A note on diagonal and Hermitian hypersurfaces. Advances in Mathematics of Communications, 2016, 10 (4) : 753-764. doi: 10.3934/amc.2016039

[4]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[5]

Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control & Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679

[6]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[7]

Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023

[8]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[9]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[10]

Penka Georgieva, Aleksey Zinger. Real orientations, real Gromov-Witten theory, and real enumerative geometry. Electronic Research Announcements, 2017, 24: 87-99. doi: 10.3934/era.2017.24.010

[11]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[12]

Wei Sun. On uniform estimate of complex elliptic equations on closed Hermitian manifolds. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1553-1570. doi: 10.3934/cpaa.2017074

[13]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[14]

Peter W. Bates, Ji Li, Mingji Zhang. Singular fold with real noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2091-2107. doi: 10.3934/dcdsb.2016038

[15]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[16]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29

[17]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[18]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[19]

A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31

[20]

Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26.

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (46)
  • HTML views (171)
  • Cited by (0)

Other articles
by authors

[Back to Top]