March 2018, 25: 1-7. doi: 10.3934/era.2018.25.001

Zermelo deformation of finsler metrics by killing vector fields

1. 

Centre International de Rencontres Mathématiques-CIRM, 163 avenue de Luminy, Case 916, F-13288 Marseille -Cedex 9, France

2. 

Institut für Mathematik, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

Received  October 10, 2017 Published  March 2018

Fund Project: The authors thank Sergei Ivanov for useful comments. V. M. was partially supported by the University of Jena and by the DFG grant MA 2565/4

We show how geodesics, Jacobi vector fields, and flag curvature of a Finsler metric behave under Zermelo deformation with respect to a Killing vector field. We also show that Zermelo deformation with respect to a Killing vector field of a locally symmetric Finsler metric is also locally symmetric.

Citation: Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001
References:
[1]

D. BaoC. Robles and Z. Shen, Zermelo Navigation on Riemannian manifolds, J. Diff. Geom., 66 (2004), 377-435. doi: 10.4310/jdg/1098137838.

[2]

S. -S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[3]

P. Foulon, Ziller-Katok deformations of Finsler metrics, in 2004 International Symposium on Finsler Geometry, Tianjin, PRC, 2004, 22-24.

[4]

P. Foulon, Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1127-1132. doi: 10.1016/S0764-4442(97)87899-8.

[5]

L. Huang and X. Mo, On the flag curvature of a class of Finsler metrics produced by the navigation problem, Pac. J. Math., 277 (2015), 149-168. doi: 10.2140/pjm.2015.277.149.

[6]

M. A. Javaloyes and H. Vitório, Zermelo navigation in pseudo-Finsler metrics, preprint, arXiv: 1412.0465.

[7]

A. B. Katok, Ergodic properties of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR. Ser. Mat., 37 (1973), 539-576; English translation in Math. USSR-Isv. 7 (1973), 535-571.

[8]

V. S. Matveev and M. Troyanov, The Binet-Legendre metric in Finsler geometry, Geom. Topol., 16 (2012), 2135-2170. doi: 10.2140/gt.2012.16.2135.

[9]

Z. Shen, Finsler manifolds of constant positive curvature, in Finsler Geometry (Seattle, WA, 1995), Contemporary Math., 196, Amer. Math. Soc., Providence, RI, 1996, 83-93.

[10]

Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.

show all references

References:
[1]

D. BaoC. Robles and Z. Shen, Zermelo Navigation on Riemannian manifolds, J. Diff. Geom., 66 (2004), 377-435. doi: 10.4310/jdg/1098137838.

[2]

S. -S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[3]

P. Foulon, Ziller-Katok deformations of Finsler metrics, in 2004 International Symposium on Finsler Geometry, Tianjin, PRC, 2004, 22-24.

[4]

P. Foulon, Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1127-1132. doi: 10.1016/S0764-4442(97)87899-8.

[5]

L. Huang and X. Mo, On the flag curvature of a class of Finsler metrics produced by the navigation problem, Pac. J. Math., 277 (2015), 149-168. doi: 10.2140/pjm.2015.277.149.

[6]

M. A. Javaloyes and H. Vitório, Zermelo navigation in pseudo-Finsler metrics, preprint, arXiv: 1412.0465.

[7]

A. B. Katok, Ergodic properties of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR. Ser. Mat., 37 (1973), 539-576; English translation in Math. USSR-Isv. 7 (1973), 535-571.

[8]

V. S. Matveev and M. Troyanov, The Binet-Legendre metric in Finsler geometry, Geom. Topol., 16 (2012), 2135-2170. doi: 10.2140/gt.2012.16.2135.

[9]

Z. Shen, Finsler manifolds of constant positive curvature, in Finsler Geometry (Seattle, WA, 1995), Contemporary Math., 196, Amer. Math. Soc., Providence, RI, 1996, 83-93.

[10]

Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.

Figure 1.  The unit ball of $\tilde F$ (dashed line) is the $v$-translation of that of $F$ (bold line). If a vector $J$ is tangent to the unit ball of $ F$ at $\xi$, it is tangent to the unit ball of $ \tilde F$ at $\xi + v$
[1]

Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257

[2]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[3]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[4]

Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623

[5]

BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85

[6]

Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031

[7]

Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165

[8]

Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387

[9]

Jorge Sotomayor, Michail Zhitomirskii. On pairs of foliations defined by vector fields in the plane. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 741-749. doi: 10.3934/dcds.2000.6.741

[10]

Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure & Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725

[11]

Jaume Llibre, Marco Antonio Teixeira. Regularization of discontinuous vector fields in dimension three. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 235-241. doi: 10.3934/dcds.1997.3.235

[12]

Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763

[13]

Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

[14]

Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073

[15]

Patrick Bonckaert, P. De Maesschalck. Gevrey and analytic local models for families of vector fields. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 377-400. doi: 10.3934/dcdsb.2008.10.377

[16]

Pierre-Étienne Druet. Higher $L^p$ regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 475-496. doi: 10.3934/dcdss.2015.8.475

[17]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[18]

Giuseppe Geymonat, Françoise Krasucki. Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains. Communications on Pure & Applied Analysis, 2009, 8 (1) : 295-309. doi: 10.3934/cpaa.2009.8.295

[19]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[20]

Shiliang Weng, Xiang Zhang. Integrability of vector fields versus inverse Jacobian multipliers and normalizers. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6539-6555. doi: 10.3934/dcds.2016083

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (57)
  • HTML views (203)
  • Cited by (0)

Other articles
by authors

[Back to Top]