August 2017, 24: 68-77. doi: 10.3934/era.2017.24.008

Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras

1. 

Dep. Matemática, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

2. 

Université de Lorraine, UFR MIM, Ile du Saulcy, CS 50128,57045 METZ, France

3. 

Pennsylvania State University, Math. Dept., University Park, PA 16802, USA

4. 

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710119, China

Manuscripts available from http://iecl.univ-lorraine.fr/ Victor.Nistor.
Carvalho was partially supported by Fundação para a Ciência e a Tecnologia (Portugal) UID/MAT/04721/2013.
Nistor has been partially supported by ANR-14-CE25-0012-01 (SINGSTAR)..

Received  October 19, 2016 Revised  July 28, 2017 Published  August 2017

Fund Project: Qiao was partially supported by NSF of China (11301317,11571211)

We characterize the groupoids for which an operator is Fredholm if and only if its principal symbol and all its boundary restrictions are invertible. A groupoid with this property is called Fredholm. Using results on the Effros-Hahn conjecture, we show that an almost amenable, Hausdorff, second countable groupoid is Fredholm. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. In particular, one can use these results to characterize the Fredholm operators on manifolds with cylindrical and poly-cylindrical ends, on manifolds that are asymptotically Euclidean or asymptotically hyperbolic, on products of such manifolds, and on many other non-compact manifolds. Moreover, we show that the desingularization of groupoids preserves the class of Fredholm groupoids.

Citation: Catarina Carvalho, Victor Nistor, Yu Qiao. Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras. Electronic Research Announcements, 2017, 24: 68-77. doi: 10.3934/era.2017.24.008
References:
[1]

B. AmmannA. D. Ionescu and V. Nistor, Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math., 11 (2006), 161-206 (electronic).

[2]

B. AmmannR. Lauter and V. Nistor, Pseudodifferential operators on manifolds with a Lie structure at infinity, Ann. of Math.(2), 165 (2007), 717-747. doi: 10.4007/annals.2007.165.717.

[3]

I. Androulidakis and G. Skandalis, Pseudodifferential calculus on a singular foliation, J. Noncommut. Geom., 5 (2011), 125-152. doi: 10.4171/JNCG/72.

[4]

C. Carvalho, V. Nistor and Yu Qiao, Fredholm conditions on non-compact manifolds: Theory and examples, ArXiv and Hal preprint 2017, submitted.

[5]

S. Echterhoff, The primitive ideal space of twisted covariant systems with continuously varying stabilizers, Math. Ann., 292 (1992), 59-84. doi: 10.1007/BF01444609.

[6]

R. Exel, Invertibility in groupoid $C^*$-algebras, in Operator Theory, Operator Algebras and Applications, Oper. Theory Adv. Appl., 242, Birkhäuser/Springer, Basel, 2014,173–183. doi: 10.1007/978-3-0348-0816-3_9.

[7]

E. Gootman and J. Rosenberg, The structure of crossed product $C^{*} $ -algebras: a proof of the generalized Effros-Hahn conjecture, Invent. Math., 52 (1979), 283-298. doi: 10.1007/BF01389885.

[8]

N. Groẞe and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., 286 (2013), 1586-1613. doi: 10.1002/mana.201300007.

[9]

M. Ionescu and D. Williams, The generalized Effros-Hahn conjecture for groupoids, Indiana Univ. Math. J., 58 (2009), 2489-2508. doi: 10.1512/iumj.2009.58.3746.

[10]

M. Ionescu and D. Williams, Irreducible representations of groupoid $C^*$ -algebras, Proc. Amer. Math. Soc., 137 (2009), 1323-1332. doi: 10.1090/S0002-9939-08-09782-7.

[11]

M. Khoshkam and G. Skandalis, Regular representation of groupoid $C^*$ -algebras and applications to inverse semigroups, J. Reine Angew. Math., 546 (2002), 47-72. doi: 10.1515/crll.2002.045.

[12]

R. LauterB. Monthubert and V. Nistor, Pseudodifferential analysis on continuous family groupoids, Doc. Math., 5 (2000), 625-655 (electronic).

[13]

R. Lauter and V. Nistor, Analysis of geometric operators on open manifolds: A groupoid approach, in Quantization of Singular Symplectic Quotients, Progr. Math., 198, Birkhäuser, Basel, 2001,181–229.

[14]

K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, volume 213 of LMS Lect. Note Series, Cambridge U. Press, Cambridge, 2005. doi: 10.1017/CBO9781107325883.

[15]

I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions, Amer. J. Math., 124 (2002), 567-593. doi: 10.1353/ajm.2002.0019.

[16]

B. Monthubert, Pseudodifferential calculus on manifolds with corners and groupoids, Proc. Amer. Math. Soc., 127 (1999), 2871-2881. doi: 10.1090/S0002-9939-99-04850-9.

[17]

P. S. MuhlyJ. Renault and D. Williams, Continuous-trace groupoid $C^*$ -algebras. Ⅲ, Trans. Amer. Math. Soc., 348 (1996), 3621-3641. doi: 10.1090/S0002-9947-96-01610-8.

[18]

V. Nistor, Desingularization of Lie groupoids and pseudodifferential operators on singular spaces, to appear in Communications in Analysis and Geometry, arXiv: 1512.08613 [math. DG].

[19]

V. Nistor and N. Prudhon, Exhausting families of representations and spectra of pseudodifferential operators, to appear in J. Oper. Theory, arXiv: 1411.7921 [math. OA].

[20]

V. NistorA. Weinstein and P. Xu, Pseudodifferential operators on differential groupoids, Pacific J. Math., 189 (1999), 117-152. doi: 10.2140/pjm.1999.189.117.

[21]

J. Renault, A Groupoid Approach to $C^{*} $ -Algebras Lecture Notes in Mathematics, 793, Springer, Berlin, 1980.

[22]

J. Renault, Représentation des produits croisés d'algébres de groupoïdes, J. Operator Theory, 18 (1987), 67-97.

[23]

J. Renault, The ideal structure of groupoid crossed product $C^*$-$ algebras, J. Operator Theory, 25 (1991), 3-36.

[24]

J. Renault, Topological amenability is a Borel property, Math. Scand., 117 (2015), 5-30. doi: 10.7146/math.scand.a-22235.

[25]

S. Roch, Algebras of approximation sequences: structure of fractal algebras, in Singular Integral Operators, Factorization and Applications, Oper. Theory Adv. Appl., 142, Birkhäuser, Basel, 2003,287–310.

[26]

A. Sims and D. Williams, Amenability for Fell bundles over groupoids, Illinois J. Math., 57 (2013), 429-444.

[27]

E. Van Erp and R. Yuncken, A groupoid approach to pseudodifferential operators, arXiv: 1511.01041 [math. DG], 2015.

[28]

D. Williams, Crossed Products of $C{^*}$ -Algebras, Mathematical Surveys and Monographs, 134, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/134.

show all references

References:
[1]

B. AmmannA. D. Ionescu and V. Nistor, Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math., 11 (2006), 161-206 (electronic).

[2]

B. AmmannR. Lauter and V. Nistor, Pseudodifferential operators on manifolds with a Lie structure at infinity, Ann. of Math.(2), 165 (2007), 717-747. doi: 10.4007/annals.2007.165.717.

[3]

I. Androulidakis and G. Skandalis, Pseudodifferential calculus on a singular foliation, J. Noncommut. Geom., 5 (2011), 125-152. doi: 10.4171/JNCG/72.

[4]

C. Carvalho, V. Nistor and Yu Qiao, Fredholm conditions on non-compact manifolds: Theory and examples, ArXiv and Hal preprint 2017, submitted.

[5]

S. Echterhoff, The primitive ideal space of twisted covariant systems with continuously varying stabilizers, Math. Ann., 292 (1992), 59-84. doi: 10.1007/BF01444609.

[6]

R. Exel, Invertibility in groupoid $C^*$-algebras, in Operator Theory, Operator Algebras and Applications, Oper. Theory Adv. Appl., 242, Birkhäuser/Springer, Basel, 2014,173–183. doi: 10.1007/978-3-0348-0816-3_9.

[7]

E. Gootman and J. Rosenberg, The structure of crossed product $C^{*} $ -algebras: a proof of the generalized Effros-Hahn conjecture, Invent. Math., 52 (1979), 283-298. doi: 10.1007/BF01389885.

[8]

N. Groẞe and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., 286 (2013), 1586-1613. doi: 10.1002/mana.201300007.

[9]

M. Ionescu and D. Williams, The generalized Effros-Hahn conjecture for groupoids, Indiana Univ. Math. J., 58 (2009), 2489-2508. doi: 10.1512/iumj.2009.58.3746.

[10]

M. Ionescu and D. Williams, Irreducible representations of groupoid $C^*$ -algebras, Proc. Amer. Math. Soc., 137 (2009), 1323-1332. doi: 10.1090/S0002-9939-08-09782-7.

[11]

M. Khoshkam and G. Skandalis, Regular representation of groupoid $C^*$ -algebras and applications to inverse semigroups, J. Reine Angew. Math., 546 (2002), 47-72. doi: 10.1515/crll.2002.045.

[12]

R. LauterB. Monthubert and V. Nistor, Pseudodifferential analysis on continuous family groupoids, Doc. Math., 5 (2000), 625-655 (electronic).

[13]

R. Lauter and V. Nistor, Analysis of geometric operators on open manifolds: A groupoid approach, in Quantization of Singular Symplectic Quotients, Progr. Math., 198, Birkhäuser, Basel, 2001,181–229.

[14]

K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, volume 213 of LMS Lect. Note Series, Cambridge U. Press, Cambridge, 2005. doi: 10.1017/CBO9781107325883.

[15]

I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions, Amer. J. Math., 124 (2002), 567-593. doi: 10.1353/ajm.2002.0019.

[16]

B. Monthubert, Pseudodifferential calculus on manifolds with corners and groupoids, Proc. Amer. Math. Soc., 127 (1999), 2871-2881. doi: 10.1090/S0002-9939-99-04850-9.

[17]

P. S. MuhlyJ. Renault and D. Williams, Continuous-trace groupoid $C^*$ -algebras. Ⅲ, Trans. Amer. Math. Soc., 348 (1996), 3621-3641. doi: 10.1090/S0002-9947-96-01610-8.

[18]

V. Nistor, Desingularization of Lie groupoids and pseudodifferential operators on singular spaces, to appear in Communications in Analysis and Geometry, arXiv: 1512.08613 [math. DG].

[19]

V. Nistor and N. Prudhon, Exhausting families of representations and spectra of pseudodifferential operators, to appear in J. Oper. Theory, arXiv: 1411.7921 [math. OA].

[20]

V. NistorA. Weinstein and P. Xu, Pseudodifferential operators on differential groupoids, Pacific J. Math., 189 (1999), 117-152. doi: 10.2140/pjm.1999.189.117.

[21]

J. Renault, A Groupoid Approach to $C^{*} $ -Algebras Lecture Notes in Mathematics, 793, Springer, Berlin, 1980.

[22]

J. Renault, Représentation des produits croisés d'algébres de groupoïdes, J. Operator Theory, 18 (1987), 67-97.

[23]

J. Renault, The ideal structure of groupoid crossed product $C^*$-$ algebras, J. Operator Theory, 25 (1991), 3-36.

[24]

J. Renault, Topological amenability is a Borel property, Math. Scand., 117 (2015), 5-30. doi: 10.7146/math.scand.a-22235.

[25]

S. Roch, Algebras of approximation sequences: structure of fractal algebras, in Singular Integral Operators, Factorization and Applications, Oper. Theory Adv. Appl., 142, Birkhäuser, Basel, 2003,287–310.

[26]

A. Sims and D. Williams, Amenability for Fell bundles over groupoids, Illinois J. Math., 57 (2013), 429-444.

[27]

E. Van Erp and R. Yuncken, A groupoid approach to pseudodifferential operators, arXiv: 1511.01041 [math. DG], 2015.

[28]

D. Williams, Crossed Products of $C{^*}$ -Algebras, Mathematical Surveys and Monographs, 134, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/134.

[1]

Bernd Ammann, Robert Lauter and Victor Nistor. Algebras of pseudodifferential operators on complete manifolds. Electronic Research Announcements, 2003, 9: 80-87.

[2]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[3]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[4]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[5]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[6]

Arnaud Münch. A variational approach to approximate controls for system with essential spectrum: Application to membranal arch. Evolution Equations & Control Theory, 2013, 2 (1) : 119-151. doi: 10.3934/eect.2013.2.119

[7]

Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26.

[8]

Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521

[9]

Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295

[10]

Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583

[11]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[12]

Mirela Kohr, Cornel Pintea, Wolfgang L. Wendland. Neumann-transmission problems for pseudodifferential Brinkman operators on Lipschitz domains in compact Riemannian manifolds. Communications on Pure & Applied Analysis, 2014, 13 (1) : 175-202. doi: 10.3934/cpaa.2014.13.175

[13]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[14]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[15]

Alexei A. Ilyin. Lower bounds for the spectrum of the Laplace and Stokes operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 131-146. doi: 10.3934/dcds.2010.28.131

[16]

Dmitry Jakobson, Alexander Strohmaier, Steve Zelditch. On the spectrum of geometric operators on Kähler manifolds. Journal of Modern Dynamics, 2008, 2 (4) : 701-718. doi: 10.3934/jmd.2008.2.701

[17]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[18]

Horst R. Thieme. Positive perturbation of operator semigroups: growth bounds, essential compactness and asynchronous exponential growth. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 735-764. doi: 10.3934/dcds.1998.4.735

[19]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[20]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (7)
  • HTML views (135)
  • Cited by (1)

Other articles
by authors

[Back to Top]