June 2017, 24: 64-67. doi: 10.3934/era.2017.24.007

A note on parallelizable dynamical systems

1. 

Departamento de Matemática, Universidade Estadual de Maringá, Maringá-PR, Brasil

2. 

Departamento de Matemática, Universidade Tecnolgica Federal do Paraná, Campo Mourõ-PR, Brasil

Received  February 24, 2017 Published  June 2017

Hájek [3] showed that a dynamical system on a Tychonoff space with paracompact orbit space is parallelizable if and only if its corresponding bundle is a locally trivial fiber bundle with fiber $\mathbb{R}$. The present paper provides an enhancement for this classical theorem by omitting all topological hypotheses.

Citation: Josiney A. Souza, Tiago A. Pacifico, Hélio V. M. Tozatti. A note on parallelizable dynamical systems. Electronic Research Announcements, 2017, 24: 64-67. doi: 10.3934/era.2017.24.007
References:
[1]

N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970.

[2]

J. Dugundji and H. A. Antosiewicz, Parallelizable flows and Lyapunov's second method, Ann. of Math., 73 (1961), 543-555. doi: 10.2307/1970316.

[3]

O. Hájek, Parallelizability revisited, Proc. Amer. Math. Soc., 27 (1971), 77-84. doi: 10.1090/S0002-9939-1971-0271925-7.

[4]

D. Husemoller, Fibre Bundles, Graduate Texts in Mathematics, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4757-2261-1.

[5]

N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, 1951.

show all references

References:
[1]

N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970.

[2]

J. Dugundji and H. A. Antosiewicz, Parallelizable flows and Lyapunov's second method, Ann. of Math., 73 (1961), 543-555. doi: 10.2307/1970316.

[3]

O. Hájek, Parallelizability revisited, Proc. Amer. Math. Soc., 27 (1971), 77-84. doi: 10.1090/S0002-9939-1971-0271925-7.

[4]

D. Husemoller, Fibre Bundles, Graduate Texts in Mathematics, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4757-2261-1.

[5]

N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, 1951.

[1]

Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004

[2]

V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44.

[3]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[4]

Javier Fernández, Marcela Zuccalli. A geometric approach to discrete connections on principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 433-444. doi: 10.3934/jgm.2013.5.433

[5]

J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81

[6]

François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39

[7]

Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069

[8]

Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1665-1696. doi: 10.3934/dcds.2015.35.1665

[9]

Thorsten Hüls. Computing stable hierarchies of fiber bundles. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3341-3367. doi: 10.3934/dcdsb.2017140

[10]

Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561

[11]

Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005

[12]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[13]

Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048

[14]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[15]

Tomas Godoy, Jean-Pierre Gossez, Sofia Paczka. On the principal eigenvalues of some elliptic problems with large drift. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 225-237. doi: 10.3934/dcds.2013.33.225

[16]

Getachew K. Befekadu, Panos J. Antsaklis. On noncooperative $n$-player principal eigenvalue games. Journal of Dynamics & Games, 2015, 2 (1) : 51-63. doi: 10.3934/jdg.2015.2.51

[17]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[18]

Alexandra Monzner, Nicolas Vichery, Frol Zapolsky. Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization. Journal of Modern Dynamics, 2012, 6 (2) : 205-249. doi: 10.3934/jmd.2012.6.205

[19]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[20]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (31)
  • HTML views (368)
  • Cited by (0)

[Back to Top]