2014, 21: 132-136. doi: 10.3934/era.2014.21.132

An arithmetic ball quotient surface whose Albanese variety is not of CM type

1. 

Department of Mathematics, Duke University, Box 90320, Durham, NC 27708-0320, United States

Received  October 2013 Revised  May 2014 Published  September 2014

An example is given of a compact quotient of the unit ball in $\mathbb{C}^2$ by an arithmetic group acting freely such that the Albanese variety is not of CM type. Such examples do not exist for congruence subgroups.
Citation: Chad Schoen. An arithmetic ball quotient surface whose Albanese variety is not of CM type. Electronic Research Announcements, 2014, 21: 132-136. doi: 10.3934/era.2014.21.132
References:
[1]

T. Chinburg and M. Stover, Arizona winter school course lecture notes,, 2012. Available from: \url{http://swc.math.arizona.edu/aws/2012/index.html}., ().

[2]

D. Cox, Primes of the Form $x^2+ny^2$,, A Wiley-Interscience Publication, (1989).

[3]

J. Cremona, Algorithms for Modular Elliptic Curves,, Second edition, (1997).

[4]

F. Diamond and J. Shurman, A First Course in Modular Forms,, Graduate Texts in Mathematics, (2005).

[5]

N. Elkies, The Klein Quartic in Number Theory,, in \emph{The Eightfold Way}, (1999), 51.

[6]

R. Hartshorne, Algebraic Geometry,, Graduate Texts in Mathematics, (1977).

[7]

F. Hirzebruch, Arrangements of lines and algebraic surfaces,, \emph{Arithmetic and Geometry, (1983), 113.

[8]

M. Inoue, Some new surfaces of general type,, \emph{Tokyo J. Math.}, 17 (1994), 295. doi: 10.3836/tjm/1270127954.

[9]

M.-N. Ishida, The irregularities of Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$,, \emph{Math. Ann.}, 262 (1983), 407. doi: 10.1007/BF01456018.

[10]

S. Lang, Abelain Varieties,, Interscience Tracts in Pure and Applied Mathematics. No. 7, (1959).

[11]

R. Livné, On Certain Covers of the Universal Elliptic Curve,, Ph.D. Thesis, (1981).

[12]

Y. Miyoaka, The maximal number of quotients singularities on surfaces with given numerical invariants,, \emph{Math. Ann.}, 268 (1984), 159. doi: 10.1007/BF01456083.

[13]

K. Murty and D. Ramakrishnan, The Albanese of unitary Shimura varieties,, in \emph{The Zeta Function of Picard Modular Surfaces} (eds. R. Langlands and D. Ramakrishnan), (1992), 445.

[14]

J. D. Rogawski, Analytic expression for the number of points mod $p$,, in \emph{The Zeta Function of Picard Modular Surfaces} (eds. R. Langlands and D. Ramakrishnan), (1992), 65.

[15]

J. Silverman, The Arithmetic of Elliptic Curves,, Graduate Texts in Mathematics, (1986). doi: 10.1007/978-1-4757-1920-8.

[16]

J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves,, Graduate Texts in Mathematics, (1994). doi: 10.1007/978-1-4612-0851-8.

[17]

R. O. Wells, Differential Analysis on Complex Manifolds,, Prentice-Hall Series in Modern Analysis, (1973).

[18]

T. Yamazaki and M. Yoshida, On Hirzebruch's examples of surfaces with $c_1^2=3c_2$,, \emph{Math. Ann.}, 266 (1984), 421. doi: 10.1007/BF01458537.

[19]

S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry,, \emph{Proc. Natl. Acad. Sci. USA}, 74 (1977), 1798. doi: 10.1073/pnas.74.5.1798.

show all references

References:
[1]

T. Chinburg and M. Stover, Arizona winter school course lecture notes,, 2012. Available from: \url{http://swc.math.arizona.edu/aws/2012/index.html}., ().

[2]

D. Cox, Primes of the Form $x^2+ny^2$,, A Wiley-Interscience Publication, (1989).

[3]

J. Cremona, Algorithms for Modular Elliptic Curves,, Second edition, (1997).

[4]

F. Diamond and J. Shurman, A First Course in Modular Forms,, Graduate Texts in Mathematics, (2005).

[5]

N. Elkies, The Klein Quartic in Number Theory,, in \emph{The Eightfold Way}, (1999), 51.

[6]

R. Hartshorne, Algebraic Geometry,, Graduate Texts in Mathematics, (1977).

[7]

F. Hirzebruch, Arrangements of lines and algebraic surfaces,, \emph{Arithmetic and Geometry, (1983), 113.

[8]

M. Inoue, Some new surfaces of general type,, \emph{Tokyo J. Math.}, 17 (1994), 295. doi: 10.3836/tjm/1270127954.

[9]

M.-N. Ishida, The irregularities of Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$,, \emph{Math. Ann.}, 262 (1983), 407. doi: 10.1007/BF01456018.

[10]

S. Lang, Abelain Varieties,, Interscience Tracts in Pure and Applied Mathematics. No. 7, (1959).

[11]

R. Livné, On Certain Covers of the Universal Elliptic Curve,, Ph.D. Thesis, (1981).

[12]

Y. Miyoaka, The maximal number of quotients singularities on surfaces with given numerical invariants,, \emph{Math. Ann.}, 268 (1984), 159. doi: 10.1007/BF01456083.

[13]

K. Murty and D. Ramakrishnan, The Albanese of unitary Shimura varieties,, in \emph{The Zeta Function of Picard Modular Surfaces} (eds. R. Langlands and D. Ramakrishnan), (1992), 445.

[14]

J. D. Rogawski, Analytic expression for the number of points mod $p$,, in \emph{The Zeta Function of Picard Modular Surfaces} (eds. R. Langlands and D. Ramakrishnan), (1992), 65.

[15]

J. Silverman, The Arithmetic of Elliptic Curves,, Graduate Texts in Mathematics, (1986). doi: 10.1007/978-1-4757-1920-8.

[16]

J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves,, Graduate Texts in Mathematics, (1994). doi: 10.1007/978-1-4612-0851-8.

[17]

R. O. Wells, Differential Analysis on Complex Manifolds,, Prentice-Hall Series in Modern Analysis, (1973).

[18]

T. Yamazaki and M. Yoshida, On Hirzebruch's examples of surfaces with $c_1^2=3c_2$,, \emph{Math. Ann.}, 266 (1984), 421. doi: 10.1007/BF01458537.

[19]

S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry,, \emph{Proc. Natl. Acad. Sci. USA}, 74 (1977), 1798. doi: 10.1073/pnas.74.5.1798.

[1]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[2]

Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043

[3]

Elisa Gorla, Maike Massierer. Index calculus in the trace zero variety. Advances in Mathematics of Communications, 2015, 9 (4) : 515-539. doi: 10.3934/amc.2015.9.515

[4]

Michael J. Jacobson, Jr., Monireh Rezai Rad, Renate Scheidler. Comparison of scalar multiplication on real hyperelliptic curves. Advances in Mathematics of Communications, 2014, 8 (4) : 389-406. doi: 10.3934/amc.2014.8.389

[5]

Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 201-210. doi: 10.3934/dcds.2004.10.201

[6]

Bertrand Lods. Variational characterizations of the effective multiplication factor of a nuclear reactor core. Kinetic & Related Models, 2009, 2 (2) : 307-331. doi: 10.3934/krm.2009.2.307

[7]

Vincent Guyonne, Luca Lorenzi. Instability in a flame ball problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 315-350. doi: 10.3934/dcdsb.2007.7.315

[8]

Nicolas Boizot, Jean-Paul Gauthier. On the motion planning of the ball with a trailer. Mathematical Control & Related Fields, 2013, 3 (3) : 269-286. doi: 10.3934/mcrf.2013.3.269

[9]

Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43

[10]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[11]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[12]

Alice B. Tumpach, Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. Journal of Geometric Mechanics, 2017, 9 (2) : 227-256. doi: 10.3934/jgm.2017010

[13]

Manuela A. D. Aguiar, Ana Paula S. Dias, Martin Golubitsky, Maria Conceição A. Leite. Homogeneous coupled cell networks with s3-symmetric quotient. Conference Publications, 2007, 2007 (Special) : 1-9. doi: 10.3934/proc.2007.2007.1

[14]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems & Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[15]

Ser Peow Tan, Yan Loi Wong and Ying Zhang. The SL(2, C) character variety of a one-holed torus. Electronic Research Announcements, 2005, 11: 103-110.

[16]

Domokos Szász. Algebro-geometric methods for hard ball systems. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 427-443. doi: 10.3934/dcds.2008.22.427

[17]

Andrey Tsiganov. Integrable Euler top and nonholonomic Chaplygin ball. Journal of Geometric Mechanics, 2011, 3 (3) : 337-362. doi: 10.3934/jgm.2011.3.337

[18]

Daniel Alpay, Mihai Putinar, Victor Vinnikov. A Hilbert space approach to bounded analytic extension in the ball. Communications on Pure & Applied Analysis, 2003, 2 (2) : 139-145. doi: 10.3934/cpaa.2003.2.139

[19]

Sobhan Seyfaddini. Unboundedness of the Lagrangian Hofer distance in the Euclidean ball. Electronic Research Announcements, 2014, 21: 1-7. doi: 10.3934/era.2014.21.1

[20]

Isabel Flores. Singular solutions of the Brezis-Nirenberg problem in a ball. Communications on Pure & Applied Analysis, 2009, 8 (2) : 673-682. doi: 10.3934/cpaa.2009.8.673

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]