2009, 16: 1-8. doi: 10.3934/era.2009.16.1

Quasiperiodic motion for the pentagram map


CNRS, Institut Camille Jordan, Université Lyon 1, Villeurbanne Cedex 69622, France


Department of Mathematics, Brown University, Providence, RI 02912, United States


Department of Mathematics, Penn State University, University Park, PA 16802

Received  January 2009 Revised  January 2009 Published  March 2009

The pentagram map is a projectively natural iteration defined on polygons, and also on a generalized notion of a polygon which we call twisted polygons. In this note we describe our recent work on the pentagram map, in which we find a Poisson structure on the space of twisted polygons and show that the pentagram map relative to this Poisson structure is completely integrable in the sense of Arnold-Liouville. For certain families of twisted polygons, such as those we call universally convex, we translate the integrability into a statement about the quasi-periodic motion of the pentagram-map orbits. We also explain how the continuous limit of the pentagram map is the classical Boussinesq equation, a completely integrable P.D.E.
Citation: Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159


Carlos Durán, Diego Otero. The projective Cartan-Klein geometry of the Helmholtz conditions. Journal of Geometric Mechanics, 2018, 10 (1) : 69-92. doi: 10.3934/jgm.2018003


Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155


Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013


Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009


Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407


Scott Crass. Solving the heptic by iteration in two dimensions: Geometry and dynamics under Klein's group of order 168. Journal of Modern Dynamics, 2007, 1 (2) : 175-203. doi: 10.3934/jmd.2007.1.175


Mike Crampin, David Saunders. Homogeneity and projective equivalence of differential equation fields. Journal of Geometric Mechanics, 2012, 4 (1) : 27-47. doi: 10.3934/jgm.2012.4.27


Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517


Daniele Bartoli, Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Multiple coverings of the farthest-off points with small density from projective geometry. Advances in Mathematics of Communications, 2015, 9 (1) : 63-85. doi: 10.3934/amc.2015.9.63


Q-Heung Choi, Changbum Chun, Tacksun Jung. The multiplicity of solutions and geometry in a wave equation . Communications on Pure & Applied Analysis, 2003, 2 (2) : 159-170. doi: 10.3934/cpaa.2003.2.159


Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223


Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73


Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017


Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441


Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461


Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369


Gunter M. Ziegler. Projected products of polygons. Electronic Research Announcements, 2004, 10: 122-134.


Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg. Billiards in ideal hyperbolic polygons. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 893-908. doi: 10.3934/dcds.2011.29.893


Larry M. Bates, Francesco Fassò. No monodromy in the champagne bottle, or singularities of a superintegrable system. Journal of Geometric Mechanics, 2016, 8 (4) : 375-389. doi: 10.3934/jgm.2016012

2016 Impact Factor: 0.483


  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

[Back to Top]