• Previous Article
    Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach
  • EECT Home
  • This Issue
  • Next Article
    Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients
doi: 10.3934/eect.2020013

Moving and oblique observations of beams and plates

1. 

Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France, CNRS, IMB, UMR 5251, F-33400 Talence, France

2. 

College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, People's Republic of China

3. 

Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

* Corresponding author: Philippe Jaming

Received  March 2019 Revised  April 2019 Published  August 2019

We study the observability of the one-dimensional Schrödinger equation and of the beam and plate equations by moving or oblique observations. Applying different versions and adaptations of Ingham's theorem on nonharmonic Fourier series, we obtain various observability and non-observability theorems. Several open problems are also formulated at the end of the paper.

Citation: Philippe Jaming, Vilmos Komornik. Moving and oblique observations of beams and plates. Evolution Equations & Control Theory, doi: 10.3934/eect.2020013
References:
[1]

C. BaiocchiV. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8), 2 (1999), 33-63. Google Scholar

[2]

C. BaiocchiV. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95. doi: 10.1023/A:1020806811956. Google Scholar

[3]

J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems, Comm. Pure Appl. Math., 32 (1979), 555-587. doi: 10.1002/cpa.3160320405. Google Scholar

[4]

A. Beurling, Interpolation for an interval in $\mathbb R^1$, in The collected works of Arne Beurling. Vol. 2. Harmonic analysi (eds. L. Carleson, P. Malliavin, J. Neuberger and J. Wermer) Contemporary Mathematicians. Birkhäuser Boston, Inc., Boston, MA, 1989. Google Scholar

[5]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69. doi: 10.1090/qam/510972. Google Scholar

[6]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465. Google Scholar

[7]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379. doi: 10.1007/BF01180426. Google Scholar

[8]

S. Jaffard, Contrôle interne exact des vibrations d'une plaque carrée, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 759-762. Google Scholar

[9]

S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire, Port. Math., 47 (1990), 423-429. Google Scholar

[10]

P. Jaming and K. Kellay, A dynamical system approach to Heisenberg Uniqueness Pairs, J. Analyse Math., 134 (2018), 273-301. doi: 10.1007/s11854-018-0010-6. Google Scholar

[11]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (3), 79 (1962), 93-150. doi: 10.24033/asens.1108. Google Scholar

[12]

A. Y. Khapalov, Exact observability of the time-varying hyperbolic equation with finitely many moving internal observations, SIAM J. Control Optim., 33 (1995), 1256-1269. doi: 10.1137/S0363012992236218. Google Scholar

[13]

A. Y. Khapalov, Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations, Springer, 2017. doi: 10.1007/978-3-319-60414-5. Google Scholar

[14]

V. Komornik, On the exact internal controllability of a Petrowsky system, J. Math. Pures Appl. (9), 71 (1992), 331-342. Google Scholar

[15]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Collection RMA, vol. 36. Masson-John Wiley, Paris-Chicester, 1994. Google Scholar

[16]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005. Google Scholar

[17]

V. Komornik and P. Loreti, Observability of rectangular membranes and plates on small sets, Evol. Equ. Control Theory, 3 (2014), 287-304. doi: 10.3934/eect.2014.3.287. Google Scholar

[18]

V. Komornik and B. Miara, Cross-like internal observability of rectangular membranes, Evol. Equ. Control Theory, 3 (2014), 135-146. doi: 10.3934/eect.2014.3.135. Google Scholar

[19]

W. Krabs, On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, Lecture Notes in Control and Information Sciences, 173. Springer-Verlag, Berlin, 1992. doi: 10.1007/BFb0039513. Google Scholar

[20]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095. Google Scholar

[21]

A. Szijártó and J. Heged'ús, Observation problems posed for the Klein-Gordon equation, Electron. J. Qual. Theory Differ. Equ., (2012), 13 pp. doi: 10.14232/ejqtde.2012.1.7. Google Scholar

[22]

G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., 361 (2009), 951-977. doi: 10.1090/S0002-9947-08-04584-4. Google Scholar

show all references

References:
[1]

C. BaiocchiV. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8), 2 (1999), 33-63. Google Scholar

[2]

C. BaiocchiV. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95. doi: 10.1023/A:1020806811956. Google Scholar

[3]

J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems, Comm. Pure Appl. Math., 32 (1979), 555-587. doi: 10.1002/cpa.3160320405. Google Scholar

[4]

A. Beurling, Interpolation for an interval in $\mathbb R^1$, in The collected works of Arne Beurling. Vol. 2. Harmonic analysi (eds. L. Carleson, P. Malliavin, J. Neuberger and J. Wermer) Contemporary Mathematicians. Birkhäuser Boston, Inc., Boston, MA, 1989. Google Scholar

[5]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69. doi: 10.1090/qam/510972. Google Scholar

[6]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465. Google Scholar

[7]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379. doi: 10.1007/BF01180426. Google Scholar

[8]

S. Jaffard, Contrôle interne exact des vibrations d'une plaque carrée, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 759-762. Google Scholar

[9]

S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire, Port. Math., 47 (1990), 423-429. Google Scholar

[10]

P. Jaming and K. Kellay, A dynamical system approach to Heisenberg Uniqueness Pairs, J. Analyse Math., 134 (2018), 273-301. doi: 10.1007/s11854-018-0010-6. Google Scholar

[11]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (3), 79 (1962), 93-150. doi: 10.24033/asens.1108. Google Scholar

[12]

A. Y. Khapalov, Exact observability of the time-varying hyperbolic equation with finitely many moving internal observations, SIAM J. Control Optim., 33 (1995), 1256-1269. doi: 10.1137/S0363012992236218. Google Scholar

[13]

A. Y. Khapalov, Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations, Springer, 2017. doi: 10.1007/978-3-319-60414-5. Google Scholar

[14]

V. Komornik, On the exact internal controllability of a Petrowsky system, J. Math. Pures Appl. (9), 71 (1992), 331-342. Google Scholar

[15]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Collection RMA, vol. 36. Masson-John Wiley, Paris-Chicester, 1994. Google Scholar

[16]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005. Google Scholar

[17]

V. Komornik and P. Loreti, Observability of rectangular membranes and plates on small sets, Evol. Equ. Control Theory, 3 (2014), 287-304. doi: 10.3934/eect.2014.3.287. Google Scholar

[18]

V. Komornik and B. Miara, Cross-like internal observability of rectangular membranes, Evol. Equ. Control Theory, 3 (2014), 135-146. doi: 10.3934/eect.2014.3.135. Google Scholar

[19]

W. Krabs, On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, Lecture Notes in Control and Information Sciences, 173. Springer-Verlag, Berlin, 1992. doi: 10.1007/BFb0039513. Google Scholar

[20]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095. Google Scholar

[21]

A. Szijártó and J. Heged'ús, Observation problems posed for the Klein-Gordon equation, Electron. J. Qual. Theory Differ. Equ., (2012), 13 pp. doi: 10.14232/ejqtde.2012.1.7. Google Scholar

[22]

G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., 361 (2009), 951-977. doi: 10.1090/S0002-9947-08-04584-4. Google Scholar

Figure  .  Case (ⅰ)
Figure  .  Case (ⅱ)
Figure  .  A case where none of (ⅰ) and (ⅱ) is satisfied
[1]

Shuya Kanagawa, Ben T. Nohara. The nonlinear Schrödinger equation created by the vibrations of an elastic plate and its dimensional expansion. Conference Publications, 2013, 2013 (special) : 415-426. doi: 10.3934/proc.2013.2013.415

[2]

Shi Jin, Peng Qi. A hybrid Schrödinger/Gaussian beam solver for quantum barriers and surface hopping. Kinetic & Related Models, 2011, 4 (4) : 1097-1120. doi: 10.3934/krm.2011.4.1097

[3]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[4]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[5]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[6]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[7]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[8]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[10]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[11]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[12]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[13]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[14]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[15]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[16]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[17]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[18]

Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic & Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361

[19]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[20]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]