# American Institute of Mathematical Sciences

March  2019, 8(1): 221-230. doi: 10.3934/eect.2019012

## Shock wave formation in compliant arteries

 1 Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, SE1 7EH London, United Kingdom 2 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 València, Spain 3 CoMMLab, Departament d'Informàtica, Universitat de València, E-46100 Burjassot, València, Spain

* Corresponding author: J. Alberto Conejero

Received  March 2018 Revised  July 2018 Published  January 2019

We focus on the problem of shock wave formation in a model of blood flow along an elastic artery. We analyze the conditions under which this phenomenon can appear and we provide an estimation of the instant of shock formation. Numerical simulations of the model have been conducted using the Discontinuous Galerkin Finite Element Method. The results are consistent with certain phenomena observed by practitioners in patients with arteriopathies, and they could predict the possible formation of a shock wave in the aorta.

Citation: Cristóbal Rodero, J. Alberto Conejero, Ignacio García-Fernández. Shock wave formation in compliant arteries. Evolution Equations & Control Theory, 2019, 8 (1) : 221-230. doi: 10.3934/eect.2019012
##### References:

show all references

##### References:
An artery as a compliant tube, where variable x denotes the spatial coordinate and t the temporal one.
Decomposition of the domain $D$.
Several beat like boundary conditions (23) for $u(0, 0) = 0$.
Formation of a shock wave with a beat-like boundary condition. The discontinuity at $x = 20$ is due to the nature of the DG method, which provides two values in the frontier between elements.
 [1] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok. Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences & Engineering, 2012, 9 (1) : 199-214. doi: 10.3934/mbe.2012.9.199 [2] Mette S. Olufsen, Ali Nadim. On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences & Engineering, 2004, 1 (1) : 61-80. doi: 10.3934/mbe.2004.1.61 [3] Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35 [4] Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 [5] Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27 [6] Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 [7] Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 [8] Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651 [9] Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic & Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015 [10] Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495 [11] Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1 [12] Roberto Triggiani. Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D, wall-normal boundary controller. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 279-314. doi: 10.3934/dcdsb.2007.8.279 [13] Rafael Vázquez, Emmanuel Trélat, Jean-Michel Coron. Control for fast and stable Laminar-to-High-Reynolds-Numbers transfer in a 2D Navier-Stokes channel flow. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 925-956. doi: 10.3934/dcdsb.2008.10.925 [14] Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 [15] Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 [16] Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 [17] Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 [18] C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 [19] Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 [20] Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

2018 Impact Factor: 1.048