March  2019, 8(1): 203-220. doi: 10.3934/eect.2019011

Optimal scalar products in the Moore-Gibson-Thompson equation

1. 

Dpt. d'Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, EPS-P4, Campus de Montilivi, 17071 Girona, Catalunya, Spain

2. 

Dpt. de Matemàtiques, Universitat Politècnica de Catalunya, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona, Catalunya, Spain

* Corresponding author: martap@imae.udg.edu

Received  June 2017 Revised  September 2017 Published  January 2019

Fund Project: Both authors are part of the Catalan research groups 2014 SGR 1083 and 2017 SGR 1392. J. Sol`a-Morales has been supported by the MINECO grants MTM2014-52402-C3-1-P and MTM2017-84214-C2-1-P (Spain). M. Pellicer has been supported by the MINECO grants MTM2014-52402- C3-3-P and MTM2017-84214-C2-2-P (Spain), and also by MPC UdG 2016/047 (U. of Girona, Catalonia)

We study the third order in time linear dissipative wave equation known as the Moore-Gibson-Thompson equation, that appears as the linearization of a the Jordan-Moore-Gibson-Thompson equation, an important model in nonlinear acoustics. The same equation also arises in viscoelasticity theory, as a model which is considered more realistic than the usual Kelvin-Voigt one for the linear deformations of a viscoelastic solid. In this context, it is known as the Standard Linear Viscoelastic model. We complete the description in [13] of the spectrum of the generator of the corresponding group of operators and show that, apart from some exceptional values of the parameters, this generator can be made to be a normal operator with a new scalar product, with a complete set of orthogonal eigenfunctions. Using this property we also obtain optimal exponential decay estimates for the solutions as $ t\to\infty $, whether the operator is normal or not.

Citation: Marta Pellicer, Joan Solà-Morales. Optimal scalar products in the Moore-Gibson-Thompson equation. Evolution Equations & Control Theory, 2019, 8 (1) : 203-220. doi: 10.3934/eect.2019011
References:
[1]

M. S. AlvesC. BuriolM. V. FerreiraJ. E. Muñoz RiveraM. Sepúlveda and O. Vera, Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math. Anal. Appl., 399 (2013), 472-479. doi: 10.1016/j.jmaa.2012.10.019.

[2]

B. de Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771. doi: 10.1016/j.jmaa.2011.04.078.

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-25. doi: 10.2140/pjm.1989.136.15.

[4]

J. A. ConejeroC. Lizama and F. Ródenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Applied Mathematics and Information Sciences, 9 (2015), 2233-2238.

[5]

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in a Hilbert Space, American Mathematical Society, 1991.

[6]

G. C. Gorain, Stabilization for the vibrations modeled by the standard linear model of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 495-506. doi: 10.1007/s12044-010-0038-8.

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981.

[8]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet, 40 (2011), 971-988.

[9]

V. K. Kalantarov and Y. Yilmaz, Decay and growth estimates for solutions of second-order and third-order differential-operator equations, Nonlinear Anal., 89 (2013), 1-7. doi: 10.1016/j.na.2013.04.016.

[10]

I. Lasiecka and R. Triggiani, Control theory for partial differential equations: Continuous and approximation theories. I. Abstract parabolic systems, in Encyclopedia of Mathematics and its Applications, 74 (2000), xxii+644+I4pp. Cambridge University Press, Cambridge.

[11]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part Ⅱ: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635. doi: 10.1016/j.jde.2015.08.052.

[12]

C. R. da LuzR. Ikehata and R. C. Charo, Asymptotic behavior for abstract evolution differential equations of second order, J. Differential Equations, 259 (2015), 5017-5039. doi: 10.1016/j.jde.2015.06.012.

[13]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929. doi: 10.1002/mma.1576.

[14]

M. Pellicer and J. Solà-Morales, Analysis of a viscoelastic spring-mass model, J. Math. Anal. Appl., 294 (2004), 687-698. doi: 10.1016/j.jmaa.2004.03.008.

[15]

M. Pellicer and J. Solà-Morales, Optimal decay rates and the selfadjoint property in overdamped systems, J. Differential Equations, 246 (2009), 2813-2828. doi: 10.1016/j.jde.2009.01.010.

[16]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Applied Mathematics & Optimization, 2017, 1-32, http://arxiv.org/abs/1603.04270. doi: 10.1007/s00245-017-9471-8.

[17]

P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, 1972.

show all references

References:
[1]

M. S. AlvesC. BuriolM. V. FerreiraJ. E. Muñoz RiveraM. Sepúlveda and O. Vera, Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math. Anal. Appl., 399 (2013), 472-479. doi: 10.1016/j.jmaa.2012.10.019.

[2]

B. de Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771. doi: 10.1016/j.jmaa.2011.04.078.

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-25. doi: 10.2140/pjm.1989.136.15.

[4]

J. A. ConejeroC. Lizama and F. Ródenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Applied Mathematics and Information Sciences, 9 (2015), 2233-2238.

[5]

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in a Hilbert Space, American Mathematical Society, 1991.

[6]

G. C. Gorain, Stabilization for the vibrations modeled by the standard linear model of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 495-506. doi: 10.1007/s12044-010-0038-8.

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981.

[8]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet, 40 (2011), 971-988.

[9]

V. K. Kalantarov and Y. Yilmaz, Decay and growth estimates for solutions of second-order and third-order differential-operator equations, Nonlinear Anal., 89 (2013), 1-7. doi: 10.1016/j.na.2013.04.016.

[10]

I. Lasiecka and R. Triggiani, Control theory for partial differential equations: Continuous and approximation theories. I. Abstract parabolic systems, in Encyclopedia of Mathematics and its Applications, 74 (2000), xxii+644+I4pp. Cambridge University Press, Cambridge.

[11]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part Ⅱ: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635. doi: 10.1016/j.jde.2015.08.052.

[12]

C. R. da LuzR. Ikehata and R. C. Charo, Asymptotic behavior for abstract evolution differential equations of second order, J. Differential Equations, 259 (2015), 5017-5039. doi: 10.1016/j.jde.2015.06.012.

[13]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929. doi: 10.1002/mma.1576.

[14]

M. Pellicer and J. Solà-Morales, Analysis of a viscoelastic spring-mass model, J. Math. Anal. Appl., 294 (2004), 687-698. doi: 10.1016/j.jmaa.2004.03.008.

[15]

M. Pellicer and J. Solà-Morales, Optimal decay rates and the selfadjoint property in overdamped systems, J. Differential Equations, 246 (2009), 2813-2828. doi: 10.1016/j.jde.2009.01.010.

[16]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Applied Mathematics & Optimization, 2017, 1-32, http://arxiv.org/abs/1603.04270. doi: 10.1007/s00245-017-9471-8.

[17]

P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, 1972.

Figure 1.  Plots of the eigenvalues of the operator $ A $ (circles) in the complex plane (in solid lines, the real and complex axes), showing different possibilities for $ \sigma_{max}(A) $. In all of them, the dashed line represents $ \textrm{Re} (\lambda) = -\frac{1}{2}\left( \frac{1}{\alpha}-\frac{1}{\beta}\right) $, which is the limit of the real parts of the nonreal eigenvalues, and the point marked as a square is $ -\frac{1}{\beta} $, which is the limit of the real ones. In panel (1a), we can see an example of the $ \alpha/\beta>1/3 $ case and, hence, $ \sigma_{max} = \textrm{Re}(\lambda^1_2) $, while in the others $ \alpha/\beta<1/3 $. In panel (1c) we can see the limit situation between cases represented in panels (1b) and (1d)
[1]

Arthur Henrique Caixeta, Irena Lasiecka, Valéria Neves Domingos Cavalcanti. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations & Control Theory, 2016, 5 (4) : 661-676. doi: 10.3934/eect.2016024

[2]

Luciano Abadías, Carlos Lizama, Marina Murillo-Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Communications on Pure & Applied Analysis, 2018, 17 (1) : 243-265. doi: 10.3934/cpaa.2018015

[3]

Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations & Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008

[4]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[5]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[6]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[7]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[8]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273

[9]

Irena Lasiecka, Roberto Triggiani. Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1515-1543. doi: 10.3934/cpaa.2016001

[10]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[11]

W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004

[12]

Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599

[13]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[14]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[15]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[16]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[17]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[18]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[19]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[20]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (46)
  • HTML views (374)
  • Cited by (0)

Other articles
by authors

[Back to Top]