June 2018, 7(2): 317-334. doi: 10.3934/eect.2018016

Optimal nonlinearity control of Schrödinger equation

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

2. 

Department of Mathematic, Northwest Normal University, Lanzhou 730070, China

* Corresponding author: Dun Zhao

Received  June 2017 Revised  February 2018 Published  May 2018

Fund Project: This work is supported by the NSFC under grants No. 11475073, No. 11325417 and No. 11601435

We study the optimal nonlinearity control problem for the nonlinear Schrödinger equation $iu_{t} = -\triangle u+V(x)u+h(t)|u|^α u$, which is originated from the Fechbach resonance management in Bose-Einstein condensates and the nonlinearity management in nonlinear optics. Based on the global well-posedness of the equation for $0<α<\frac{4}{N}$, we show the existence of the optimal control. The Fréchet differentiability of the objective functional is proved, and the first order optimality system for $N≤ 3$ is presented.

Citation: Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016
References:
[1]

L. BaudouinO. Kavian and J. P. Puel, Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations, 216 (2005), 188-222. doi: 10.1016/j.jde.2005.04.006.

[2]

L. BergéV. K. MezentsevJ. J. RasmussenP. L. Christiansen and Y. B. Gaididei, Self-guiding light in layered nonlinear media, Opt. Lett., 25 (2000), 1037-1039. doi: 10.1364/OL.25.001037.

[3]

R. Carles, Nonlinear Schrödinger Equations with time dependent potentials, Commun. Math. Sci., 9 (2011), 937-964. doi: 10.4310/CMS.2011.v9.n4.a1.

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.

[5]

T. Cazenave and M. Scialom, A Schrödinger equation with time-oscillating nonlinearity, Rev. Mat. Complut., 23 (2010), 321-339. doi: 10.1007/s13163-009-0018-7.

[6]

M. Centurion, M. A. Porter, P. G. Kevrekidis and D. Psaltis, Nonlinearity management in optics: Experiment, theory and simulation Phys. Rev. Lett., 97 (2006), 033903. doi: 10.1103/PhysRevLett.97.033903.

[7]

S. Choi and N. P. Bigelow, Quantum control of Bose-Einstein condensates using Feshbach resonance, J. Modern Optics, 52 (2005), 1081-1087. doi: 10.1080/09500340512331323475.

[8]

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136, American Mathematical Society, 2007. doi: 10.1090/surv/136.

[9]

S. CuccagnaE. Kirr and D. Pelinovsky, Parametric resonance of ground states in the nonlinear Schrödinger equation, J. Differential Equations, 220 (2006), 85-120. doi: 10.1016/j.jde.2005.07.009.

[10]

I. Damergi and O. Goubet, Blow-up solutions to the nonlinear Schrödinger equation with oscillating nonlinearities, J. Math. Anal. Appl., 352 (2009), 336-344. doi: 10.1016/j.jmaa.2008.07.079.

[11]

D. Y. Fang and Z. Han, A Schrödinger equation with time-oscillating critical nonlinearity, Nonlinear Analysis, 74 (2011), 4698-4708. doi: 10.1016/j.na.2011.04.035.

[12]

B. FengJ. Liu and J. Zheng, Optimal bilinear control of nonlinear Hartree equation in ${{\mathbb{R}}^{3}}$, Electronic. J. Differential Equations, 2013 (2013), 1-14.

[13]

B. Feng and K. Wang, Optimal bilinear control of nonlinear Hartree equations with singular potentials, J. Optim. Theory Appl., 170 (2016), 756-771. doi: 10.1007/s10957-016-0976-0.

[14]

B. FengD. Zhao and P. Y. Chen, Optimal bilinear control of nonlinear Schrödinger equations with singular potentials, Nonlinear Analysis, 107 (2014), 12-21. doi: 10.1016/j.na.2014.04.017.

[15]

B. Feng and D. Zhao, Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differential Equations, 260 (2016), 2973-2993. doi: 10.1016/j.jde.2015.10.026.

[16]

M. HintermüllerD. MarahrensP. A. Markowich and C. Sparber, Optimal bilinear control of Gross-Pitaevskii equations, SIAM J. Control Optim., 51 (2013), 2509-2543. doi: 10.1137/120866233.

[17]

U. Hohenester, P. K. Rekdel, A. Borzi and J. Schmiedmayer, Optimal quantum control of Bose Einstein condensates in magnetic microtraps Phys. Rev. A, 75 (2007), 023602. doi: 10.1103/PhysRevA.75.023602.

[18]

S. InouyeM. R. AndrewsJ. StengerH.-J. MiesnerD. M. Stamper-Kurn and W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature, 392 (1998), 151-154. doi: 10.1038/32354.

[19]

K. Ito and K. Kunisch, Optimal bilinear control of an abstract Schrödinger equation, SIAM J. Control Optim., 46 (2007), 274-287. doi: 10.1137/05064254X.

[20]

P. G. KevrekidisD. E. Pelinovsky and A. Stefanov, Nonlinearity management in higher dimensions, J. Phys. A: Math. Gen., 39 (2006), 479-488. doi: 10.1088/0305-4470/39/3/002.

[21]

P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis and Boris A. Malomed, Feshbach resonance management for Bose-Einstein condensates Phys. Rev. Lett., 90 (2003), 230401. doi: 10.1103/PhysRevLett.90.230401.

[22]

V. V. Konotop and P. Pacciani, Collapse of solutions of the nonlinear Schrödinger equation with a time-dependent nonlinearity: application to Bose-Einstein condensates Phys. Rev. Lett., 94 2005), 240405. doi: 10.1103/PhysRevLett.94.240405.

[23]

T. Özsari, Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities, arXiv: 1705.03965, [math. AP] (2017).

[24]

D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Averaging for solitons with nonlinearity management Phys. Rev. Lett., 91 (2003), 240201. doi: 10.1103/PhysRevLett.91.240201.

[25]

J. Simon, Compact sets in the space $L^{p}(0,T;B)$, Ann. Mat. Pura. Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[26]

J. StengerS. InouyeM. R. AndrewsH.-J. MiesnerD. M. Stamper-Kurn and W. Ketterle, Strongly Enhanced Inelastic Collisions in a Bose-Einstein Condensate near Feshbach Resonances, Phys. Rev. Lett., 82 (1999), 2422-2425. doi: 10.1103/PhysRevLett.82.2422.

[27]

I. Towers and B. A. Malomed, Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity, J. Opt. Soc. Amer. B Opt. Phys., 19 (2002), 537-543. doi: 10.1364/JOSAB.19.000537.

[28]

J. Werschnik and E. Gross, Quantum optimal control theory, J. Phys. B, 40 (2007), 175-211. doi: 10.1088/0953-4075/40/18/R01.

[29]

J. Zhang and S. Zhu, Blow-up profile to solutions of NLS with oscillating nonlinearities, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 219-234. doi: 10.1007/s00030-011-0125-2.

show all references

References:
[1]

L. BaudouinO. Kavian and J. P. Puel, Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations, 216 (2005), 188-222. doi: 10.1016/j.jde.2005.04.006.

[2]

L. BergéV. K. MezentsevJ. J. RasmussenP. L. Christiansen and Y. B. Gaididei, Self-guiding light in layered nonlinear media, Opt. Lett., 25 (2000), 1037-1039. doi: 10.1364/OL.25.001037.

[3]

R. Carles, Nonlinear Schrödinger Equations with time dependent potentials, Commun. Math. Sci., 9 (2011), 937-964. doi: 10.4310/CMS.2011.v9.n4.a1.

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.

[5]

T. Cazenave and M. Scialom, A Schrödinger equation with time-oscillating nonlinearity, Rev. Mat. Complut., 23 (2010), 321-339. doi: 10.1007/s13163-009-0018-7.

[6]

M. Centurion, M. A. Porter, P. G. Kevrekidis and D. Psaltis, Nonlinearity management in optics: Experiment, theory and simulation Phys. Rev. Lett., 97 (2006), 033903. doi: 10.1103/PhysRevLett.97.033903.

[7]

S. Choi and N. P. Bigelow, Quantum control of Bose-Einstein condensates using Feshbach resonance, J. Modern Optics, 52 (2005), 1081-1087. doi: 10.1080/09500340512331323475.

[8]

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136, American Mathematical Society, 2007. doi: 10.1090/surv/136.

[9]

S. CuccagnaE. Kirr and D. Pelinovsky, Parametric resonance of ground states in the nonlinear Schrödinger equation, J. Differential Equations, 220 (2006), 85-120. doi: 10.1016/j.jde.2005.07.009.

[10]

I. Damergi and O. Goubet, Blow-up solutions to the nonlinear Schrödinger equation with oscillating nonlinearities, J. Math. Anal. Appl., 352 (2009), 336-344. doi: 10.1016/j.jmaa.2008.07.079.

[11]

D. Y. Fang and Z. Han, A Schrödinger equation with time-oscillating critical nonlinearity, Nonlinear Analysis, 74 (2011), 4698-4708. doi: 10.1016/j.na.2011.04.035.

[12]

B. FengJ. Liu and J. Zheng, Optimal bilinear control of nonlinear Hartree equation in ${{\mathbb{R}}^{3}}$, Electronic. J. Differential Equations, 2013 (2013), 1-14.

[13]

B. Feng and K. Wang, Optimal bilinear control of nonlinear Hartree equations with singular potentials, J. Optim. Theory Appl., 170 (2016), 756-771. doi: 10.1007/s10957-016-0976-0.

[14]

B. FengD. Zhao and P. Y. Chen, Optimal bilinear control of nonlinear Schrödinger equations with singular potentials, Nonlinear Analysis, 107 (2014), 12-21. doi: 10.1016/j.na.2014.04.017.

[15]

B. Feng and D. Zhao, Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differential Equations, 260 (2016), 2973-2993. doi: 10.1016/j.jde.2015.10.026.

[16]

M. HintermüllerD. MarahrensP. A. Markowich and C. Sparber, Optimal bilinear control of Gross-Pitaevskii equations, SIAM J. Control Optim., 51 (2013), 2509-2543. doi: 10.1137/120866233.

[17]

U. Hohenester, P. K. Rekdel, A. Borzi and J. Schmiedmayer, Optimal quantum control of Bose Einstein condensates in magnetic microtraps Phys. Rev. A, 75 (2007), 023602. doi: 10.1103/PhysRevA.75.023602.

[18]

S. InouyeM. R. AndrewsJ. StengerH.-J. MiesnerD. M. Stamper-Kurn and W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature, 392 (1998), 151-154. doi: 10.1038/32354.

[19]

K. Ito and K. Kunisch, Optimal bilinear control of an abstract Schrödinger equation, SIAM J. Control Optim., 46 (2007), 274-287. doi: 10.1137/05064254X.

[20]

P. G. KevrekidisD. E. Pelinovsky and A. Stefanov, Nonlinearity management in higher dimensions, J. Phys. A: Math. Gen., 39 (2006), 479-488. doi: 10.1088/0305-4470/39/3/002.

[21]

P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis and Boris A. Malomed, Feshbach resonance management for Bose-Einstein condensates Phys. Rev. Lett., 90 (2003), 230401. doi: 10.1103/PhysRevLett.90.230401.

[22]

V. V. Konotop and P. Pacciani, Collapse of solutions of the nonlinear Schrödinger equation with a time-dependent nonlinearity: application to Bose-Einstein condensates Phys. Rev. Lett., 94 2005), 240405. doi: 10.1103/PhysRevLett.94.240405.

[23]

T. Özsari, Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities, arXiv: 1705.03965, [math. AP] (2017).

[24]

D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Averaging for solitons with nonlinearity management Phys. Rev. Lett., 91 (2003), 240201. doi: 10.1103/PhysRevLett.91.240201.

[25]

J. Simon, Compact sets in the space $L^{p}(0,T;B)$, Ann. Mat. Pura. Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[26]

J. StengerS. InouyeM. R. AndrewsH.-J. MiesnerD. M. Stamper-Kurn and W. Ketterle, Strongly Enhanced Inelastic Collisions in a Bose-Einstein Condensate near Feshbach Resonances, Phys. Rev. Lett., 82 (1999), 2422-2425. doi: 10.1103/PhysRevLett.82.2422.

[27]

I. Towers and B. A. Malomed, Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity, J. Opt. Soc. Amer. B Opt. Phys., 19 (2002), 537-543. doi: 10.1364/JOSAB.19.000537.

[28]

J. Werschnik and E. Gross, Quantum optimal control theory, J. Phys. B, 40 (2007), 175-211. doi: 10.1088/0953-4075/40/18/R01.

[29]

J. Zhang and S. Zhu, Blow-up profile to solutions of NLS with oscillating nonlinearities, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 219-234. doi: 10.1007/s00030-011-0125-2.

[1]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[4]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[5]

Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395

[6]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[7]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[8]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[9]

J. Alberto Conejero, Marko Kostić, Pedro J. Miana, Marina Murillo-Arcila. Distributionally chaotic families of operators on Fréchet spaces. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1915-1939. doi: 10.3934/cpaa.2016022

[10]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[11]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[12]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[13]

Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070

[14]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[15]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[16]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[17]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[18]

J. Leonel Rocha, Sandra M. Aleixo. An extension of Gompertzian growth dynamics: Weibull and Fréchet models. Mathematical Biosciences & Engineering, 2013, 10 (2) : 379-398. doi: 10.3934/mbe.2013.10.379

[19]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[20]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (77)
  • HTML views (147)
  • Cited by (0)

Other articles
by authors

[Back to Top]