June 2018, 7(2): 275-280. doi: 10.3934/eect.2018013

On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation

1. 

Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore, Piazza dei Cavalieri, 3, 56126 Pisa, Italy

2. 

Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

* Corresponding author: Kazumasa Fujiwara

The first author was partly supported by Grant-in-Aid for JSPS Fellows no 16J30008.

Received  May 2017 Revised  January 2018 Published  May 2018

An explicit lifespan estimate is presented for the derivative Schrödinger equations with periodic boundary condition.

Citation: Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013
References:
[1]

D. M. Ambrose and G. Simpson, Local existence theory for derivative nonlinear Schrödinger equations with noninteger power nonlinearities, SIAM J. Math. Anal., 47 (2015), 2241-2264. doi: 10.1137/140955227.

[2]

H. A. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659. doi: 10.1090/S0002-9947-01-02754-4.

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86. doi: 10.1137/S0036141001394541.

[4]

K. Fujiwara and T. Ozawa, Finite time blowup of solutions to the nonlinear Schrödinger equation without gauge invariance, J. Math. Phys., 57 (2016), 082103, 8pp. doi: 10.1063/1.4960725.

[5]

K. Fujiwara and T. Ozawa, Lifespan of strong solutions to the periodic nonlinear Schrödinger equation without gauge invariance, J. Evol. Equ., 17 (2017), 1023-1030. doi: 10.1007/s00028-016-0364-0.

[6]

A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920. doi: 10.1137/070689139.

[7]

M. Hayashi and T. Ozawa, Well-posedness for a generalized derivative nonlinear Schrödinger equation, J. Differential Equations, 261 (2016), 5424-5445. doi: 10.1016/j.jde.2016.08.018.

[8]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833. doi: 10.1016/0362-546X(93)90071-Y.

[9]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36. doi: 10.1016/0167-2789(92)90185-P.

[10]

N. Hayashi and T. Ozawa, Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., 25 (1994), 1488-1503. doi: 10.1137/S0036141093246129.

[11]

S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not., 2006 (2006), Art. ID 96763, 33pp. doi: 10.1155/IMRN/2006/96763.

[12]

X. LiuG. Simpson and C. Sulem, Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation, J. Nonlinear Sci., 23 (2013), 557-583. doi: 10.1007/s00332-012-9161-2.

[13]

K. MioT. OginoK. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, 41 (1976), 265-271. doi: 10.1143/JPSJ.41.265.

[14]

R. Mosincat, Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in H1/2, J. Differential Equations, 263 (2017), 4658-4722. doi: 10.1016/j.jde.2017.05.026.

[15]

A. R. NahmodT. OhL. Rey-Bellet and G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. (JEMS), 14 (2012), 1275-1330. doi: 10.4171/JEMS/333.

[16]

T. Ozawa and Y. Yamazaki, Life-span of smooth solutions to the complex Ginzburg-Landau type equation on a torus, Nonlinearity, 16 (2003), 2029-2034. doi: 10.1088/0951-7715/16/6/309.

[17]

G. d. N. Santos, Existence and uniqueness of solution for a generalized nonlinear derivative Schrödinger equation, J. Differential Equations, 259 (2015), 2030-2060. doi: 10.1016/j.jde.2015.03.023.

[18]

C. Sulem and P. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Applied Mathematical Sciences, Springer New York, 1999.

[19]

H. Sunagawa, The lifespan of solutions to nonlinear Schrödinger and Klein-Gordon equations, Hokkaido Math. J., 37 (2008), 825-838. doi: 10.14492/hokmj/1249046371.

[20]

H. Takaoka, Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.

[21]

H. Takaoka, A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below H1/2, J. Differential Equations, 260 (2016), 818-859. doi: 10.1016/j.jde.2015.09.011.

[22]

S. B. Tan, Blow-up solutions for mixed nonlinear Schrödinger equations, Acta Math. Sin. (Engl. Ser.), 20 (2004), 115-124. doi: 10.1007/s10114-003-0295-x.

[23]

L. Thomann and N. Tzvetkov, Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 2771-2791. doi: 10.1088/0951-7715/23/11/003.

[24]

M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem, Funkcial. Ekvac., 23 (1980), 259-277.

[25]

Y. Y. S. Win, Global well-posedness of the derivative nonlinear Schrödinger equations on T, Funkcial. Ekvac., 53 (2010), 51-88. doi: 10.1619/fesi.53.51.

show all references

References:
[1]

D. M. Ambrose and G. Simpson, Local existence theory for derivative nonlinear Schrödinger equations with noninteger power nonlinearities, SIAM J. Math. Anal., 47 (2015), 2241-2264. doi: 10.1137/140955227.

[2]

H. A. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659. doi: 10.1090/S0002-9947-01-02754-4.

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86. doi: 10.1137/S0036141001394541.

[4]

K. Fujiwara and T. Ozawa, Finite time blowup of solutions to the nonlinear Schrödinger equation without gauge invariance, J. Math. Phys., 57 (2016), 082103, 8pp. doi: 10.1063/1.4960725.

[5]

K. Fujiwara and T. Ozawa, Lifespan of strong solutions to the periodic nonlinear Schrödinger equation without gauge invariance, J. Evol. Equ., 17 (2017), 1023-1030. doi: 10.1007/s00028-016-0364-0.

[6]

A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920. doi: 10.1137/070689139.

[7]

M. Hayashi and T. Ozawa, Well-posedness for a generalized derivative nonlinear Schrödinger equation, J. Differential Equations, 261 (2016), 5424-5445. doi: 10.1016/j.jde.2016.08.018.

[8]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833. doi: 10.1016/0362-546X(93)90071-Y.

[9]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36. doi: 10.1016/0167-2789(92)90185-P.

[10]

N. Hayashi and T. Ozawa, Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., 25 (1994), 1488-1503. doi: 10.1137/S0036141093246129.

[11]

S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not., 2006 (2006), Art. ID 96763, 33pp. doi: 10.1155/IMRN/2006/96763.

[12]

X. LiuG. Simpson and C. Sulem, Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation, J. Nonlinear Sci., 23 (2013), 557-583. doi: 10.1007/s00332-012-9161-2.

[13]

K. MioT. OginoK. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, 41 (1976), 265-271. doi: 10.1143/JPSJ.41.265.

[14]

R. Mosincat, Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in H1/2, J. Differential Equations, 263 (2017), 4658-4722. doi: 10.1016/j.jde.2017.05.026.

[15]

A. R. NahmodT. OhL. Rey-Bellet and G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. (JEMS), 14 (2012), 1275-1330. doi: 10.4171/JEMS/333.

[16]

T. Ozawa and Y. Yamazaki, Life-span of smooth solutions to the complex Ginzburg-Landau type equation on a torus, Nonlinearity, 16 (2003), 2029-2034. doi: 10.1088/0951-7715/16/6/309.

[17]

G. d. N. Santos, Existence and uniqueness of solution for a generalized nonlinear derivative Schrödinger equation, J. Differential Equations, 259 (2015), 2030-2060. doi: 10.1016/j.jde.2015.03.023.

[18]

C. Sulem and P. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Applied Mathematical Sciences, Springer New York, 1999.

[19]

H. Sunagawa, The lifespan of solutions to nonlinear Schrödinger and Klein-Gordon equations, Hokkaido Math. J., 37 (2008), 825-838. doi: 10.14492/hokmj/1249046371.

[20]

H. Takaoka, Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.

[21]

H. Takaoka, A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below H1/2, J. Differential Equations, 260 (2016), 818-859. doi: 10.1016/j.jde.2015.09.011.

[22]

S. B. Tan, Blow-up solutions for mixed nonlinear Schrödinger equations, Acta Math. Sin. (Engl. Ser.), 20 (2004), 115-124. doi: 10.1007/s10114-003-0295-x.

[23]

L. Thomann and N. Tzvetkov, Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 2771-2791. doi: 10.1088/0951-7715/23/11/003.

[24]

M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem, Funkcial. Ekvac., 23 (1980), 259-277.

[25]

Y. Y. S. Win, Global well-posedness of the derivative nonlinear Schrödinger equations on T, Funkcial. Ekvac., 53 (2010), 51-88. doi: 10.1619/fesi.53.51.

[1]

Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002

[2]

Paweł Pilarczyk. Topological-numerical approach to the existence of periodic trajectories in ODE's. Conference Publications, 2003, 2003 (Special) : 701-708. doi: 10.3934/proc.2003.2003.701

[3]

Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016

[4]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[5]

Mickael Chekroun, Michael Ghil, Jean Roux, Ferenc Varadi. Averaging of time - periodic systems without a small parameter. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 753-782. doi: 10.3934/dcds.2006.14.753

[6]

Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 651-664. doi: 10.3934/dcds.2000.6.651

[7]

Yoshiki Maeda, Noboru Okazawa. Schrödinger type evolution equations with monotone nonlinearity of non-power type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 771-781. doi: 10.3934/dcdss.2013.6.771

[8]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[9]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[10]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[11]

Chiara Zanini, Fabio Zanolin. Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4045-4067. doi: 10.3934/dcds.2012.32.4045

[12]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

[13]

Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1085-1104. doi: 10.3934/jimo.2017091

[14]

Meina Gao. Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 173-204. doi: 10.3934/dcds.2015.35.173

[15]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[16]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[17]

Takanobu Okazaki. Large time behaviour of solutions of nonlinear ode describing hysteresis. Conference Publications, 2007, 2007 (Special) : 804-813. doi: 10.3934/proc.2007.2007.804

[18]

Ignacio García de la Vega, Ricardo Riaza. Bifurcation without parameters in circuits with memristors: A DAE approach. Conference Publications, 2015, 2015 (special) : 340-348. doi: 10.3934/proc.2015.0340

[19]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[20]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (41)
  • HTML views (132)
  • Cited by (0)

Other articles
by authors

[Back to Top]