2018, 7(1): 95-116. doi: 10.3934/eect.2018006

Optimal control for a conserved phase field system with a possibly singular potential

1. 

Dipartimento di Matematica "F. Casorati", Università di Pavia Via Ferrata 1, 27100 Pavia, Italy

2. 

Gheorghe Mihoc-Caius Iacob Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Calea 13 Septembrie 13, 050711 Bucharest, Romania and Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Group of the Project PN-Ⅲ-P4-ID-PCE-2016-0372, Romania

Corresponding author: Elisabetta Rocca

Received  August 2017 Revised  October 2017 Published  January 2018

In this paper we study a distributed control problem for a phase-field system of conserved type with a possibly singular potential. We mainly handle two cases: the case of a viscous Cahn-Hilliard type dynamics for the phase variable in case of a logarithmic-type potential with bounded domain and the case of a standard Cahn-Hilliard equation in case of a regular potential with unbounded domain, like the classical double-well potential, for example. Necessary first order conditions of optimality are derived under natural assumptions on the data.

Citation: Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006
References:
[1]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

[2]

V. Barbu, M. L. Bernardi, P. Colli, G. Gilardi, Optimal control problems of phase relaxation models, J. Optim. Theory Appl., 109 (2001), 557-585. doi: 10.1023/A:1017563604922.

[3]

J. L. Boldrini, B. M. C. Caretta, E. Fernández-Cara, Some optimal control problems for a two-phase field model of solidification, Rev. Mat. Complut., 23 (2010), 49-75. doi: 10.1007/s13163-009-0012-0.

[4]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Math. Stud., 5 North-Holland, Amsterdam, 1973.

[5]

D. Brochet, D. Hilhorst, A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Differential Equations, 1 (1996), 547-578.

[6]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.

[7]

G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990), 77-94. doi: 10.1093/imamat/44.1.77.

[8]

J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 2 (1958), 258-267. doi: 10.1002/9781118788295.ch4.

[9]

C. Cavaterra, M. Grasselli, H. Wu, Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions, Comm. Pure Appl. Anal., 13 (2014), 1855-1890. doi: 10.3934/cpaa.2014.13.1855.

[10]

P. Colli, M. H. Farshbaf-Shaker, G. Gilardi, J. Sprekels, Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015), 2696-2721. doi: 10.1137/140984749.

[11]

P. Colli, G. Gilardi, P. Laurençot, A. Novick-Cohen, Uniqueness and long-time behaviour for the conserved phase-field system with memory, Discrete Contin. Dynam. Systems, 5 (1999), 375-390. doi: 10.3934/dcds.1999.5.375.

[12]

P. Colli, G. Gilardi, G. Marinoschi, A boundary control problem for a possibly singular phase field system with dynamic boundary conditions, J. Math. Anal. Appl., 434 (2016), 432-463. doi: 10.1016/j.jmaa.2015.09.011.

[13]

P. Colli, G. Gilardi, G. Marinoschi, E. Rocca, Optimal control for a phase field system with a possibly singular potential, Math. Control Relat. Fields, 6 (2016), 95-112. doi: 10.3934/mcrf.2016.6.95.

[14]

P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Distributed optimal control problems for phase field systems with singular potential, An. Ȿtiinţ. Univ. "Ovidius" Constanţa Ser. Mat., to appear (2017).

[15]

P. Colli, G. Gilardi, J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972-994. doi: 10.1016/j.jmaa.2014.05.008.

[16]

P. Colli, G. Gilardi, J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325. doi: 10.1515/anona-2015-0035.

[17]

P. Colli, G. Gilardi, J. Sprekels, A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), 195-225. doi: 10.1007/s00245-015-9299-z.

[18]

P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn., 24 (2012), 437-459. doi: 10.1007/s00161-011-0215-8.

[19]

P. Colli, G. Gilardi, J. Sprekels, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80 (2012), 119-149. doi: 10.1007/s00032-012-0181-z.

[20]

P. Colli, G. Marinoschi, E. Rocca, Sharp interface control in a Penrose-Fife model, ESAIM Control Optim. Calc. Var., 22 (2016), 473-499. doi: 10.1051/cocv/2015014.

[21]

G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Rend. Cl. Sci. Mat. Nat., 141 (2007), 129-161.

[22]

K.-H. Hoffmann, L. S. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. Optim., 13 (1992), 11-27. doi: 10.1080/01630569208816458.

[23]

K.-H. Hoffmann, N. Kenmochi, M. Kubo, N. Yamazaki, Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl., 17 (2007), 305-336.

[24]

N. Kenmochi, M. Niezgódka, Nonlinear system for non-isothermal diffusive phase separation, J. Math. Anal. Appl., 188 (1994), 651-679. doi: 10.1006/jmaa.1994.1451.

[25]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans. Amer. Math. Soc., 23, Amer. Math. Soc., Providence, RI, 1968.

[26]

C. Lefter, J. Sprekels, Optimal boundary control of a phase field system modeling nonisothermal phase transitions, Adv. Math. Sci. Appl., 17 (2007), 181-194.

[27]

J. -L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[28]

A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152. doi: 10.1016/j.jmaa.2012.11.038.

[29]

A. Miranville, S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582. doi: 10.1002/mma.464.

[30]

K. Shirakawa, N. Yamazaki, Optimal control problems of phase field system with total variation functional as the interfacial energy, Adv. Differential Equations, 18 (2013), 309-350.

[31]

J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.

[32]

J. Sprekels, S. Zheng, Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions, Adv. Math. Sci. Appl., 1 (1992), 113-125.

show all references

References:
[1]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

[2]

V. Barbu, M. L. Bernardi, P. Colli, G. Gilardi, Optimal control problems of phase relaxation models, J. Optim. Theory Appl., 109 (2001), 557-585. doi: 10.1023/A:1017563604922.

[3]

J. L. Boldrini, B. M. C. Caretta, E. Fernández-Cara, Some optimal control problems for a two-phase field model of solidification, Rev. Mat. Complut., 23 (2010), 49-75. doi: 10.1007/s13163-009-0012-0.

[4]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Math. Stud., 5 North-Holland, Amsterdam, 1973.

[5]

D. Brochet, D. Hilhorst, A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Differential Equations, 1 (1996), 547-578.

[6]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.

[7]

G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990), 77-94. doi: 10.1093/imamat/44.1.77.

[8]

J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 2 (1958), 258-267. doi: 10.1002/9781118788295.ch4.

[9]

C. Cavaterra, M. Grasselli, H. Wu, Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions, Comm. Pure Appl. Anal., 13 (2014), 1855-1890. doi: 10.3934/cpaa.2014.13.1855.

[10]

P. Colli, M. H. Farshbaf-Shaker, G. Gilardi, J. Sprekels, Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015), 2696-2721. doi: 10.1137/140984749.

[11]

P. Colli, G. Gilardi, P. Laurençot, A. Novick-Cohen, Uniqueness and long-time behaviour for the conserved phase-field system with memory, Discrete Contin. Dynam. Systems, 5 (1999), 375-390. doi: 10.3934/dcds.1999.5.375.

[12]

P. Colli, G. Gilardi, G. Marinoschi, A boundary control problem for a possibly singular phase field system with dynamic boundary conditions, J. Math. Anal. Appl., 434 (2016), 432-463. doi: 10.1016/j.jmaa.2015.09.011.

[13]

P. Colli, G. Gilardi, G. Marinoschi, E. Rocca, Optimal control for a phase field system with a possibly singular potential, Math. Control Relat. Fields, 6 (2016), 95-112. doi: 10.3934/mcrf.2016.6.95.

[14]

P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Distributed optimal control problems for phase field systems with singular potential, An. Ȿtiinţ. Univ. "Ovidius" Constanţa Ser. Mat., to appear (2017).

[15]

P. Colli, G. Gilardi, J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972-994. doi: 10.1016/j.jmaa.2014.05.008.

[16]

P. Colli, G. Gilardi, J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325. doi: 10.1515/anona-2015-0035.

[17]

P. Colli, G. Gilardi, J. Sprekels, A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), 195-225. doi: 10.1007/s00245-015-9299-z.

[18]

P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn., 24 (2012), 437-459. doi: 10.1007/s00161-011-0215-8.

[19]

P. Colli, G. Gilardi, J. Sprekels, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80 (2012), 119-149. doi: 10.1007/s00032-012-0181-z.

[20]

P. Colli, G. Marinoschi, E. Rocca, Sharp interface control in a Penrose-Fife model, ESAIM Control Optim. Calc. Var., 22 (2016), 473-499. doi: 10.1051/cocv/2015014.

[21]

G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Rend. Cl. Sci. Mat. Nat., 141 (2007), 129-161.

[22]

K.-H. Hoffmann, L. S. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. Optim., 13 (1992), 11-27. doi: 10.1080/01630569208816458.

[23]

K.-H. Hoffmann, N. Kenmochi, M. Kubo, N. Yamazaki, Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl., 17 (2007), 305-336.

[24]

N. Kenmochi, M. Niezgódka, Nonlinear system for non-isothermal diffusive phase separation, J. Math. Anal. Appl., 188 (1994), 651-679. doi: 10.1006/jmaa.1994.1451.

[25]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans. Amer. Math. Soc., 23, Amer. Math. Soc., Providence, RI, 1968.

[26]

C. Lefter, J. Sprekels, Optimal boundary control of a phase field system modeling nonisothermal phase transitions, Adv. Math. Sci. Appl., 17 (2007), 181-194.

[27]

J. -L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[28]

A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152. doi: 10.1016/j.jmaa.2012.11.038.

[29]

A. Miranville, S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582. doi: 10.1002/mma.464.

[30]

K. Shirakawa, N. Yamazaki, Optimal control problems of phase field system with total variation functional as the interfacial energy, Adv. Differential Equations, 18 (2013), 309-350.

[31]

J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.

[32]

J. Sprekels, S. Zheng, Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions, Adv. Math. Sci. Appl., 1 (1992), 113-125.

[1]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[2]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[3]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[4]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[5]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[6]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[7]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[8]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn--Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[9]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evolution Equations & Control Theory, 2017, 6 (1) : 35-58. doi: 10.3934/eect.2017003

[10]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[11]

Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353

[12]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[13]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[14]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[15]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[16]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[17]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[18]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[19]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[20]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

2016 Impact Factor: 0.826

Article outline

[Back to Top]