• Previous Article
    Sufficiency and mixed type duality for multiobjective variational control problems involving α-V-univexity
  • EECT Home
  • This Issue
  • Next Article
    The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework
March  2017, 6(1): 111-134. doi: 10.3934/eect.2017007

On an inverse problem for fractional evolution equation

1. 

Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam

2. 

Laboratoire de Mathématiques Pôle Sciences et Technologie, Universié de La Rochelle, Aénue M. Crépeau, 17042 La Rochelle Cedex, France

3. 

Institute of Computational Science and Technology, Ho Chi Minh City, Viet Nam

4. 

Department of Civil and Environmental Engineering, Seoul National University, Republic of Korea

* Corresponding author:nguyenhuytuan@tdt.edu.vn.

Received  February 2016 Revised  September 2016 Published  December 2016

In this paper, we investigate a backward problem for a fractional abstract evolution equation for which we wants to extract the initial distribution from the observation data provided along the final time $t = T.$ This problem is well-known to be ill-posed due to the rapid decay of the forward process. We consider a final value problem for fractional evolution process with respect to time. For this ill-posed problem, we construct two regularized solutions using quasi-reversibility method and quasi-boundary value method. The well-posedness of the regularized solutions as well as the convergence property is analyzed. The advantage of the proposed methods is that the regularized solution is given analytically and therefore is easy to be implemented. A numerical example is presented to show the validity of the proposed methods.

Citation: Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007
References:
[1]

H. Brezis, Analyse Fonctionelle Masson, Paris, 1983. Google Scholar

[2]

J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293. doi: 10.1016/0370-1573(90)90099-N. Google Scholar

[3]

G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well posed problems, Elect. J. Diff. Eqns. , (1994), approx. 9 pp. Google Scholar

[4]

M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems, J. Math. Anal. Appl., 301 (2005), 419-426. doi: 10.1016/j.jmaa.2004.08.001. Google Scholar

[5]

L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413-3442. doi: 10.1155/S0161171203301486. Google Scholar

[6]

X. L. FengL. Elden and C. L. Fu, Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region, J. Math. Comp. Simulation, 79 (2008), 177-188. doi: 10.1016/j.matcom.2007.11.005. Google Scholar

[7]

M. GinoaS. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials, Phys. A, 191 (1992), 449-453. doi: 10.1016/0378-4371(92)90566-9. Google Scholar

[8]

J. Hadamard, Lectures on the Cauchy Problem in Linear Differential Equations Yale University Press, New Haven, CT, 1923.Google Scholar

[9]

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Res., 34 (1998), 10271033. doi: 10.1029/98WR00214. Google Scholar

[10]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differnetial Equations, North -Holland Mathematics Studies, vol. 204, Elsevier Science B. V, Amsterdam, 2006. Google Scholar

[11]

R. Lattés and J. -L. Lions, Méthode de Quasi-réversibilité et Applications Dunod, Paris, 1967. Google Scholar

[12]

J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Appl. Anal., 89 (2010), 1769-1788. doi: 10.1080/00036810903479731. Google Scholar

[13]

Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), 141-160. doi: 10.2478/s13540-012-0010-7. Google Scholar

[14]

Y. Luchko, Maximum principle and its application for the time-fractional diffusion equations, Fract. Calc. Appl. Anal., 14 (2011), 110-124. doi: 10.2478/s13540-011-0008-6. Google Scholar

[15]

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125. doi: 10.1016/S0378-4371(99)00503-8. Google Scholar

[16]

R. Nigmatulin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B, 133 (1986), 425-430. doi: 10.1002/pssb.2221330150. Google Scholar

[17]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. Google Scholar

[18]

C. RenX. Xu and S. Lu, Regularization by projection for a backward problem of the timefractional diffusion equation, J. Inverse Ill-Posed Probl., 22 (2014), 121-139. doi: 10.1515/jip-2011-0021. Google Scholar

[19]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A, 27 (1994), 3407-3410. doi: 10.1088/0305-4470/27/10/017. Google Scholar

[20]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusionwave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447. doi: 10.1016/j.jmaa.2011.04.058. Google Scholar

[21]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, (1993). Google Scholar

[22]

R. E. Showalter, Quasi-reversibility of first and second order parabolic evolution equations, in Improperly posed boundary value problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974), Res. Notes in Math., Pitman, London, 1 (1975), 76-84. Google Scholar

[23]

D. D. Trong and N. H. Tuan, Regularization and error estimates for nonhomogeneous backward heat problems, Electron. J. Diff. Eqns., 2006 (2006), 1–10. Google Scholar

[24]

J. G. WangT. Wei and B. Y. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Appl. Math. Model., 37 (2013), 8518-8532. doi: 10.1016/j.apm.2013.03.071. Google Scholar

show all references

References:
[1]

H. Brezis, Analyse Fonctionelle Masson, Paris, 1983. Google Scholar

[2]

J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293. doi: 10.1016/0370-1573(90)90099-N. Google Scholar

[3]

G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well posed problems, Elect. J. Diff. Eqns. , (1994), approx. 9 pp. Google Scholar

[4]

M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems, J. Math. Anal. Appl., 301 (2005), 419-426. doi: 10.1016/j.jmaa.2004.08.001. Google Scholar

[5]

L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413-3442. doi: 10.1155/S0161171203301486. Google Scholar

[6]

X. L. FengL. Elden and C. L. Fu, Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region, J. Math. Comp. Simulation, 79 (2008), 177-188. doi: 10.1016/j.matcom.2007.11.005. Google Scholar

[7]

M. GinoaS. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials, Phys. A, 191 (1992), 449-453. doi: 10.1016/0378-4371(92)90566-9. Google Scholar

[8]

J. Hadamard, Lectures on the Cauchy Problem in Linear Differential Equations Yale University Press, New Haven, CT, 1923.Google Scholar

[9]

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Res., 34 (1998), 10271033. doi: 10.1029/98WR00214. Google Scholar

[10]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differnetial Equations, North -Holland Mathematics Studies, vol. 204, Elsevier Science B. V, Amsterdam, 2006. Google Scholar

[11]

R. Lattés and J. -L. Lions, Méthode de Quasi-réversibilité et Applications Dunod, Paris, 1967. Google Scholar

[12]

J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Appl. Anal., 89 (2010), 1769-1788. doi: 10.1080/00036810903479731. Google Scholar

[13]

Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), 141-160. doi: 10.2478/s13540-012-0010-7. Google Scholar

[14]

Y. Luchko, Maximum principle and its application for the time-fractional diffusion equations, Fract. Calc. Appl. Anal., 14 (2011), 110-124. doi: 10.2478/s13540-011-0008-6. Google Scholar

[15]

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125. doi: 10.1016/S0378-4371(99)00503-8. Google Scholar

[16]

R. Nigmatulin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B, 133 (1986), 425-430. doi: 10.1002/pssb.2221330150. Google Scholar

[17]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. Google Scholar

[18]

C. RenX. Xu and S. Lu, Regularization by projection for a backward problem of the timefractional diffusion equation, J. Inverse Ill-Posed Probl., 22 (2014), 121-139. doi: 10.1515/jip-2011-0021. Google Scholar

[19]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A, 27 (1994), 3407-3410. doi: 10.1088/0305-4470/27/10/017. Google Scholar

[20]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusionwave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447. doi: 10.1016/j.jmaa.2011.04.058. Google Scholar

[21]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, (1993). Google Scholar

[22]

R. E. Showalter, Quasi-reversibility of first and second order parabolic evolution equations, in Improperly posed boundary value problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974), Res. Notes in Math., Pitman, London, 1 (1975), 76-84. Google Scholar

[23]

D. D. Trong and N. H. Tuan, Regularization and error estimates for nonhomogeneous backward heat problems, Electron. J. Diff. Eqns., 2006 (2006), 1–10. Google Scholar

[24]

J. G. WangT. Wei and B. Y. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Appl. Math. Model., 37 (2013), 8518-8532. doi: 10.1016/j.apm.2013.03.071. Google Scholar

Figure 1.  Reconstruction results at t = 0 from noisy measurement data at $T = 2$ with $ \in =10^{-1}, \in =10^{-2}, \in = 10^{-3}$ using QBV method
Figure 2.  Reconstruction results at t = 0 from noisy measurement data: 2D drawing using QBV Method
Figure 3.  Reconstruction results at $t = 0.05$ from noisy measurement data at $T = 2$ with $ \in =10^{-1}, \in =10^{-2}, \in = 10^{-3}$ using QBV method
Figure 4.  Reconstruction results at $t = 0.25$ from noisy measurement data at $T = 2$ with $ \in =10^{-1}, \in =10^{-2}, \in = 10^{-3}$ using QBV method
Figure 5.  Reconstruction results at t = 0 from noisy measurement data at $t=0$ with $ \in =10^{-1}, \in =10^{-2}, \in = 10^{-3}$ using Quasi Reversibility method
Figure 6.  Reconstruction results at t = 0 from noisy measurement data at $t=0$ with $ \in =10^{-1}, \in =10^{-2}, \in = 10^{-3}$ using Quasi Reversibility method
Figure 7.  The exact solution in Example 2 at t = 1.
Figure 8.  Reconstruction results at t = 0 from noisy measurement data at $t=1$ with $ \in =10^{-1}, \in =10^{-2}$ using Quasi Reversibility method
Figure 9.  Reconstruction results at t = 0 from noisy measurement data at $t=1$ with $ \in = 10^{-3}, \in = 10^{-4}$ using Quasi Reversibility method
Table 1.   
$ \in $t = 0t = 0.05t = 0.25
err1 err2 err1err2 err1 err2
1E-015.19E-025.11E-033.97E-011.48E-023.90E-011.26E-02
1E-021.47E-031.45E-042.90E-023.68E-039.61E-023.12E-02
1E-031.89E-051.86E-061.25E-024.63E-041.21E-023.92E-04
1E-041.95E-071.92E-081.28E-034.77E-051.24E-034.03E-05
1E-051.96E-061.93E-071.29E-044.78E-061.24E-044.04E-06
1E-062.05E-072.12E-081.29E-054.78E-071.25E-054.04E-07
$ \in $t = 0t = 0.05t = 0.25
err1 err2 err1err2 err1 err2
1E-015.19E-025.11E-033.97E-011.48E-023.90E-011.26E-02
1E-021.47E-031.45E-042.90E-023.68E-039.61E-023.12E-02
1E-031.89E-051.86E-061.25E-024.63E-041.21E-023.92E-04
1E-041.95E-071.92E-081.28E-034.77E-051.24E-034.03E-05
1E-051.96E-061.93E-071.29E-044.78E-061.24E-044.04E-06
1E-062.05E-072.12E-081.29E-054.78E-071.25E-054.04E-07
Table 2.   
$ \in $t = 0t = 1
err1 err2 err1 err2
1E-014.00E-013.04E-023.00E-011.68E-02
1E-024.86E-023.33E-022.86E-031.84E-04
1E-034.61E-033.25E-042.61E-041.80E-05
1E-045.19E-042.43E-052.19E-051.34E-06
1E-056.04E-056.88E-072.04E-043.81E-07
1E-067.49E-068.43E-082.49E-054.66E-08
$ \in $t = 0t = 1
err1 err2 err1 err2
1E-014.00E-013.04E-023.00E-011.68E-02
1E-024.86E-023.33E-022.86E-031.84E-04
1E-034.61E-033.25E-042.61E-041.80E-05
1E-045.19E-042.43E-052.19E-051.34E-06
1E-056.04E-056.88E-072.04E-043.81E-07
1E-067.49E-068.43E-082.49E-054.66E-08
[1]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[2]

Chi Hin Chan, Magdalena Czubak, Luis Silvestre. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 847-861. doi: 10.3934/dcds.2010.27.847

[3]

Barbara Kaltenbacher, William Rundell. Regularization of a backwards parabolic equation by fractional operators. Inverse Problems & Imaging, 2019, 13 (2) : 401-430. doi: 10.3934/ipi.2019020

[4]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[5]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[6]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020081

[7]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[8]

Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094

[9]

Marita Thomas. Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 235-255. doi: 10.3934/dcdss.2013.6.235

[10]

Jiongmin Yong. Forward-backward evolution equations and applications. Mathematical Control & Related Fields, 2016, 6 (4) : 653-704. doi: 10.3934/mcrf.2016019

[11]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[12]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[13]

Jussi Korpela, Matti Lassas, Lauri Oksanen. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Problems & Imaging, 2019, 13 (3) : 575-596. doi: 10.3934/ipi.2019027

[14]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[15]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[16]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[17]

Qi Lü, Xu Zhang. Transposition method for backward stochastic evolution equations revisited, and its application. Mathematical Control & Related Fields, 2015, 5 (3) : 529-555. doi: 10.3934/mcrf.2015.5.529

[18]

Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems & Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019

[19]

Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems & Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397

[20]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (31)
  • HTML views (91)
  • Cited by (0)

[Back to Top]