• Previous Article
    A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction
  • EECT Home
  • This Issue
  • Next Article
    Relaxation of regularity for the Westervelt equation by nonlinear damping with applications in acoustic-acoustic and elastic-acoustic coupling
2014, 3(4): 579-594. doi: 10.3934/eect.2014.3.579

Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm

1. 

Mohammed First University, National School of Applied Sciences Al Hoceima, Ajdir, 32003, Al Hoceima, Morocco

2. 

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,Rehovot 76100, Israel

Received  May 2014 Revised  September 2014 Published  October 2014

We introduce here a simple finite-dimensional feedback control scheme for stabilizing solutions of infinite-dimensional dissipative evolution equations, such as reaction-diffusion systems, the Navier-Stokes equations and the Kuramoto-Sivashinsky equation. The designed feedback control scheme takes advantage of the fact that such systems possess finite number of determining parameters (degrees of freedom), namely, finite number of determining Fourier modes, determining nodes, and determining interpolants and projections. In particular, the feedback control scheme uses finitely many of such observables and controllers. This observation is of a particular interest since it implies that our approach has far more reaching applications, in particular, in data assimilation. Moreover, we emphasize that our scheme treats all kinds of the determining projections, as well as, the various dissipative equations with one unified approach. However, for the sake of simplicity we demonstrate our approach in this paper to a one-dimensional reaction-diffusion equation paradigm.
Citation: Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579
References:
[1]

A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation,, Physica D, 137 (2000), 49. doi: 10.1016/S0167-2789(99)00175-X.

[2]

A. Azouani, E. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables,, Journal of Nonlinear Analysis, 24 (2014), 277. doi: 10.1007/s00332-013-9189-y.

[3]

A. V. Babin and M. Vishik, Attractors of Evolution Partial Differential Equations,, North-Holland, (1992).

[4]

H. Bessaih, E. Olson and E. S. Titi, Continuous assimilation of data with stochastic noise, preprint,, , ().

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Classics in Applied Mathematics, 40 (2002). doi: 10.1137/1.9780898719208.

[6]

B. Cockburn, D. A. Jones and E. S. Titi, Degrés de liberté déterminants pour équations non linéaires dissipatives,, C.R. Acad. Sci.-Paris, 321 (1995), 563.

[7]

B. Cockburn, D. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems,, Math. Comput., 66 (1997), 1073. doi: 10.1090/S0025-5718-97-00850-8.

[8]

P. Constantin, Ch. Doering and E. S. Titi, Rigorous estimates of small scales in turbulent flows,, Journal of Mathematical Physics, 37 (1996), 6152. doi: 10.1063/1.531769.

[9]

P. Constantin and C. Foias, Navier-Stokes Equations,, University of Chicago Press, (1988).

[10]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, 70 (1989). doi: 10.1007/978-1-4612-3506-4.

[11]

N. H. El-Farra, A. Armaou and P. D. Christofides, Analysis and control of parabolic PDE systems with input constraints,, Automatica, 39 (2003), 715. doi: 10.1016/S0005-1098(02)00304-7.

[12]

C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell and E. S. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433. doi: 10.1016/0375-9601(88)90295-2.

[13]

C. Foias, M. Jolly and R. Karavchenko, Determining forms for the Kuramoto-Sivashinsky and Lorenz equations: Analysis and computations,, (in preparation)., ().

[14]

C. Foias, M. Jolly, R. Kravchenko and E. S. Titi, A determining form for the 2D Navier-Stokes equations - the Fourier modes case,, Journal of Mathematical Physics, 53 (2012).

[15]

C. Foias, M. Jolly, R. Karavchenko and E. S. Titi, A unified approach to determining forms for the 2D Navier-Stokes equations - the general interpolants case,, Uspekhi Matematicheskikh Nauk, 69 (2014), 359. doi: 10.1070/RM2014v069n02ABEH004891.

[16]

C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511546754.

[17]

C. Foias, O. P. Manley, R. Temam and Y. Treve, Asymptotic analysis of the Navier-Stokes equations,, Physica D, 9 (1983), 157. doi: 10.1016/0167-2789(83)90297-X.

[18]

C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension deux,, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1.

[19]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, Journal of Differential Equations, 73 (1988), 309. doi: 10.1016/0022-0396(88)90110-6.

[20]

C. Foias, G. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations,, Journal of Dynamics and Differential Equations, 1 (1989), 199. doi: 10.1007/BF01047831.

[21]

C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values,, Math. Comput., 43 (1984), 117. doi: 10.1090/S0025-5718-1984-0744927-9.

[22]

C. Foias and R. Temam, Asymptotic numerical analysis for the Navier-Stokes equations,, in Nonlinear Dynamics and Turbulence, (1983), 139.

[23]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135. doi: 10.1088/0951-7715/4/1/009.

[24]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Survey and Monographs, 25 (1988).

[25]

M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,, Physica D, 44 (1990), 38. doi: 10.1016/0167-2789(90)90046-R.

[26]

D. Jones and E. S. Titi, On the number of determining nodes for the 2-D Navier-Stokes equations,, J. Math. Anal. Appl., 168 (1992), 72. doi: 10.1016/0022-247X(92)90190-O.

[27]

D. Jones and E. S. Titi, Determining finite volume elements for the 2-D Navier-Stokes equations,, Physica D, 60 (1992), 165. doi: 10.1016/0167-2789(92)90233-D.

[28]

D. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations,, Indiana University Mathematics Journal, 42 (1993), 875. doi: 10.1512/iumj.1993.42.42039.

[29]

I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equation,, Nonlinearity, 5 (1992), 997. doi: 10.1088/0951-7715/5/5/001.

[30]

E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study,, (in preparation)., ().

[31]

J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global attractors,, Cambridge Texts in Applied Mathematics, (2001). doi: 10.1007/978-94-010-0732-0.

[32]

R. Rosa, Exact finite-dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation,, J. Dynamics and Diff. Eqs, 15 (2003), 61. doi: 10.1023/A:1026153311546.

[33]

R. Rosa and R. Temam, Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, in Foundations of Computational Mathematics, (1997), 382.

[34]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, 15 (2002). doi: 10.1007/978-1-4757-5037-9.

[35]

S. Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I. G. Kevrekidis, E. S. Titi and T. J. Mountziares, Order reduction of nonlinear dynamic models for distributed reacting systems,, Journal of Process Control, 10 (2000), 177. doi: 10.1016/S0959-1524(99)00029-3.

[36]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997). doi: 10.1007/978-1-4612-0645-3.

[37]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984).

show all references

References:
[1]

A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation,, Physica D, 137 (2000), 49. doi: 10.1016/S0167-2789(99)00175-X.

[2]

A. Azouani, E. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables,, Journal of Nonlinear Analysis, 24 (2014), 277. doi: 10.1007/s00332-013-9189-y.

[3]

A. V. Babin and M. Vishik, Attractors of Evolution Partial Differential Equations,, North-Holland, (1992).

[4]

H. Bessaih, E. Olson and E. S. Titi, Continuous assimilation of data with stochastic noise, preprint,, , ().

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Classics in Applied Mathematics, 40 (2002). doi: 10.1137/1.9780898719208.

[6]

B. Cockburn, D. A. Jones and E. S. Titi, Degrés de liberté déterminants pour équations non linéaires dissipatives,, C.R. Acad. Sci.-Paris, 321 (1995), 563.

[7]

B. Cockburn, D. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems,, Math. Comput., 66 (1997), 1073. doi: 10.1090/S0025-5718-97-00850-8.

[8]

P. Constantin, Ch. Doering and E. S. Titi, Rigorous estimates of small scales in turbulent flows,, Journal of Mathematical Physics, 37 (1996), 6152. doi: 10.1063/1.531769.

[9]

P. Constantin and C. Foias, Navier-Stokes Equations,, University of Chicago Press, (1988).

[10]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, 70 (1989). doi: 10.1007/978-1-4612-3506-4.

[11]

N. H. El-Farra, A. Armaou and P. D. Christofides, Analysis and control of parabolic PDE systems with input constraints,, Automatica, 39 (2003), 715. doi: 10.1016/S0005-1098(02)00304-7.

[12]

C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell and E. S. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433. doi: 10.1016/0375-9601(88)90295-2.

[13]

C. Foias, M. Jolly and R. Karavchenko, Determining forms for the Kuramoto-Sivashinsky and Lorenz equations: Analysis and computations,, (in preparation)., ().

[14]

C. Foias, M. Jolly, R. Kravchenko and E. S. Titi, A determining form for the 2D Navier-Stokes equations - the Fourier modes case,, Journal of Mathematical Physics, 53 (2012).

[15]

C. Foias, M. Jolly, R. Karavchenko and E. S. Titi, A unified approach to determining forms for the 2D Navier-Stokes equations - the general interpolants case,, Uspekhi Matematicheskikh Nauk, 69 (2014), 359. doi: 10.1070/RM2014v069n02ABEH004891.

[16]

C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511546754.

[17]

C. Foias, O. P. Manley, R. Temam and Y. Treve, Asymptotic analysis of the Navier-Stokes equations,, Physica D, 9 (1983), 157. doi: 10.1016/0167-2789(83)90297-X.

[18]

C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension deux,, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1.

[19]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, Journal of Differential Equations, 73 (1988), 309. doi: 10.1016/0022-0396(88)90110-6.

[20]

C. Foias, G. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations,, Journal of Dynamics and Differential Equations, 1 (1989), 199. doi: 10.1007/BF01047831.

[21]

C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values,, Math. Comput., 43 (1984), 117. doi: 10.1090/S0025-5718-1984-0744927-9.

[22]

C. Foias and R. Temam, Asymptotic numerical analysis for the Navier-Stokes equations,, in Nonlinear Dynamics and Turbulence, (1983), 139.

[23]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135. doi: 10.1088/0951-7715/4/1/009.

[24]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Survey and Monographs, 25 (1988).

[25]

M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,, Physica D, 44 (1990), 38. doi: 10.1016/0167-2789(90)90046-R.

[26]

D. Jones and E. S. Titi, On the number of determining nodes for the 2-D Navier-Stokes equations,, J. Math. Anal. Appl., 168 (1992), 72. doi: 10.1016/0022-247X(92)90190-O.

[27]

D. Jones and E. S. Titi, Determining finite volume elements for the 2-D Navier-Stokes equations,, Physica D, 60 (1992), 165. doi: 10.1016/0167-2789(92)90233-D.

[28]

D. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations,, Indiana University Mathematics Journal, 42 (1993), 875. doi: 10.1512/iumj.1993.42.42039.

[29]

I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equation,, Nonlinearity, 5 (1992), 997. doi: 10.1088/0951-7715/5/5/001.

[30]

E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study,, (in preparation)., ().

[31]

J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global attractors,, Cambridge Texts in Applied Mathematics, (2001). doi: 10.1007/978-94-010-0732-0.

[32]

R. Rosa, Exact finite-dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation,, J. Dynamics and Diff. Eqs, 15 (2003), 61. doi: 10.1023/A:1026153311546.

[33]

R. Rosa and R. Temam, Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, in Foundations of Computational Mathematics, (1997), 382.

[34]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, 15 (2002). doi: 10.1007/978-1-4757-5037-9.

[35]

S. Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I. G. Kevrekidis, E. S. Titi and T. J. Mountziares, Order reduction of nonlinear dynamic models for distributed reacting systems,, Journal of Process Control, 10 (2000), 177. doi: 10.1016/S0959-1524(99)00029-3.

[36]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997). doi: 10.1007/978-1-4612-0645-3.

[37]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984).

[1]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[2]

Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027

[3]

Luigi C. Berselli, Franco Flandoli. Remarks on determining projections for stochastic dissipative equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 197-214. doi: 10.3934/dcds.1999.5.197

[4]

H. T. Banks, John E. Banks, R. A. Everett, John D. Stark. An adaptive feedback methodology for determining information content in stable population studies. Mathematical Biosciences & Engineering, 2016, 13 (4) : 653-671. doi: 10.3934/mbe.2016013

[5]

Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems & Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591

[6]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[7]

Hongyu Liu, Jun Zou. Uniqueness in determining multiple polygonal scatterers of mixed type. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 375-396. doi: 10.3934/dcdsb.2008.9.375

[8]

Giovanni Alessandrini, Elio Cabib. Determining the anisotropic traction state in a membrane by boundary measurements. Inverse Problems & Imaging, 2007, 1 (3) : 437-442. doi: 10.3934/ipi.2007.1.437

[9]

Andrei Fursikov, Alexey V. Gorshkov. Certain questions of feedback stabilization for Navier-Stokes equations. Evolution Equations & Control Theory, 2012, 1 (1) : 109-140. doi: 10.3934/eect.2012.1.109

[10]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[11]

Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021

[12]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[13]

Michel Cristofol, Shumin Li, Eric Soccorsi. Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary. Mathematical Control & Related Fields, 2016, 6 (3) : 407-427. doi: 10.3934/mcrf.2016009

[14]

K.F. Gurski, K.A. Hoffman, E.K. Thomas. Modeling HIV: Determining the factors affecting the racial disparity in the prevalence of infected women. Conference Publications, 2015, 2015 (special) : 569-578. doi: 10.3934/proc.2015.0569

[15]

Michael A. Saum, Tim Schulze. The role of processing speed in determining step patterns during directional epitaxy. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 443-457. doi: 10.3934/dcdsb.2009.11.443

[16]

Kim Knudsen, Mikko Salo. Determining nonsmooth first order terms from partial boundary measurements. Inverse Problems & Imaging, 2007, 1 (2) : 349-369. doi: 10.3934/ipi.2007.1.349

[17]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems & Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[18]

Dorothy Bollman, Omar Colón-Reyes. Determining steady state behaviour of discrete monomial dynamical systems. Advances in Mathematics of Communications, 2017, 11 (2) : 283-287. doi: 10.3934/amc.2017019

[19]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89

[20]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]