2014, 3(3): 373-397. doi: 10.3934/eect.2014.3.373

On the viscoelastic coupled suspension bridge

1. 

Dipartimento di Matematica, Università degli studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy

2. 

DICATAM, Università degli studi di Brescia, Via D.Valotti 9, 25133 Brescia, Italy

Received  August 2013 Revised  February 2014 Published  August 2014

In this paper we discuss the asymptotic behavior of a doubly nonlinear problem describing the vibrations of a coupled suspension bridge. The single-span road-bed is modeled as an extensible viscoelastic beam which is simply supported at the ends. The main cable is modeled by a viscoelastic string and is connected to the road-bed by a distributed system of one-sided elastic springs. A constant axial force $p$ is applied at one end of the deck, and time-independent vertical loads are allowed to act both on the road-bed and on the suspension cable. For this general model we obtain original results, including the existence of a regular global attractor for all $p\in\mathbb{R}$.
Citation: Ivana Bochicchio, Claudio Giorgi, Elena Vuk. On the viscoelastic coupled suspension bridge. Evolution Equations & Control Theory, 2014, 3 (3) : 373-397. doi: 10.3934/eect.2014.3.373
References:
[1]

A. M. Abdel-Ghaffar and L. I. Rubin, Non linear free vibrations of suspension bridges: Theory,, ASCE J. Eng. Mech., 109 (1983), 313. doi: 10.1061/(ASCE)0733-9399(1983)109:1(313).

[2]

A. M. Abdel-Ghaffar and L. I. Rubin, Non linear free vibrations of suspension bridges: Application,, ASCE J. Eng. Mech., 109 (1983), 330. doi: 10.1061/(ASCE)0733-9399(1983)109:1(330).

[3]

N. U. Ahmed and H. Harbi, Mathematical analysis of dynamic models of suspension bridges,, SIAM J. Appl. Math., 58 (1998), 853. doi: 10.1137/S0036139996308698.

[4]

Y. An, Nonlinear perturbations of a coupled system of steady state suspension bridge equations,, Nonlinear Analysis, 51 (2002), 1285. doi: 10.1016/S0362-546X(01)00899-9.

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).

[6]

J. M. Ball, Initial-boundary value problems for an extensible beam,, J. Math. Anal. Appl., 42 (1973), 61. doi: 10.1016/0022-247X(73)90121-2.

[7]

J. M. Ball, Stability theory for an extensible beam,, J. Differential Equations, 14 (1973), 399. doi: 10.1016/0022-0396(73)90056-9.

[8]

I. Bochicchio, C. Giorgi and E. Vuk, Steady states analysis and exponential stability of an extensible thermoelastic system,, Comunication to SIMAI Congress, 3 (2009), 232. doi: 10.1685/CSC09232.

[9]

I. Bochicchio, C. Giorgi and E. Vuk, Long-term damped dynamics of the extensible suspension bridge,, Int. J. Differ. Equ., 2010 (2010). doi: 10.1155/2010/383420.

[10]

I. Bochicchio and E. Vuk, Buckling and longterm dynamics of a nonlinear model for the extensible beam,, Math. Comput. Modelling, 51 (2010), 833. doi: 10.1016/j.mcm.2009.10.010.

[11]

I. Bochicchio and E. Vuk, Longtime behavior for oscillations of an extensible viscoelastic beam with elastic external supply,, Int. J. Pure Appl. Math., 58 (2010), 61.

[12]

I. Bochicchio, C. Giorgi and E. Vuk, On some nonlinear models for suspension bridges,, in Evolution Equations and Materials with Memory, (2012), 1.

[13]

I. Bochicchio, C. Giorgi and E. Vuk, Long-term dynamics of the coupled suspension bridge system,, Math. Models Methods Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500212.

[14]

I. Bochicchio, C. Giorgi and E. Vuk, Asymptotic dynamics of nonlinear coupled suspension bridge equations,, J. Math. Anal. Appl., 402 (2013), 319. doi: 10.1016/j.jmaa.2013.01.036.

[15]

I. Bochicchio, C. Giorgi and E Vuk, Long-term dynamics of a viscoelatic suspension bridge,, Meccanica, 49 (2014), 2139. doi: 10.1007/s11012-014-9887-z.

[16]

Q. H. Choi and T. Jung, A nonlinear suspension bridge equation with nonconstant load,, Nonlinear Anal., 35 (1999), 649. doi: 10.1016/S0362-546X(97)00616-0.

[17]

M. Conti, S. Gatti and V. Pata, Uniform decay properties of linear Volterra integro-differential equations,, Math. Models Methods Appl. Sci., 18 (2008), 21. doi: 10.1142/S0218202508002590.

[18]

M. Conti and and V. Pata, Weakly dissipative semilinear equations of viscoelasticity,, Commun. Pure Appl. Anal., 4 (2005), 705. doi: 10.3934/cpaa.2005.4.705.

[19]

M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory,, Indiana Univ. Math. J., 55 (2006), 169. doi: 10.1512/iumj.2006.55.2661.

[20]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam,, Discrete Contin. Dyn. Syst., 25 (2009), 1041. doi: 10.3934/dcds.2009.25.1041.

[21]

M. Coti Zelati, C. Giorgi and V. Pata, Steady states of the hinged extensible beam with external load,, Math. Models Methods Appl. Sci., 20 (2010), 43. doi: 10.1142/S0218202510004143.

[22]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rational Mech. Anal., 37 (1970), 297. doi: 0.1007/BF00251609.

[23]

P. Drábek, G. Holubová, A. Matas and P. Nečesal, Nonlinear models of suspension bridges: Discussion of the results,, Applications of Mathematics, 48 (2003), 497. doi: 10.1023/B:APOM.0000024489.96314.7f.

[24]

A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity,, North-Holland, (1994).

[25]

C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam,, Nonlinearity, 21 (2008), 713. doi: 10.1088/0951-7715/21/4/004.

[26]

C. Giorgi and E. Vuk, Steady-state solutions for a suspension bridge with intermediate supports,, Bound. Value Probl., 2013 (2013). doi: 10.1186/1687-2770-2013-204.

[27]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of a large-scale nonlinear oscillations in suspension bridge,, Z. Angew. Math. Phys., 40 (1989), 171. doi: 10.1007/BF00944997.

[28]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory,, in Evolution Equations, 50 (2002), 155.

[29]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Amer. Math. Soc., ().

[30]

G. Holubová and A. Matas, Initial-boundary problem for the nonlinear string-beam system,, J. Math. Anal. Appl., 288 (2003), 784. doi: 10.1016/j.jmaa.2003.09.028.

[31]

W. Kanok-Nukulchai, P. K. A. Yiu and D. M. Brotton, Mathematical modelling of cable-stayed bridges,, Structural Engineering International, 2 (1992), 108. doi: 10.2749/101686692780616030.

[32]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537. doi: 10.1137/1032120.

[33]

Q. Ma and C. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations,, J. Differential Equations, 246 (2009), 3755. doi: 10.1016/j.jde.2009.02.022.

[34]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,, Arch. Rational Mech. Anal., 98 (1987), 167. doi: 10.1007/BF00251232.

[35]

V. Pata, Exponential stability in linear viscoelasticity,, Quart. Applied Math., 64 (2006), 499. doi: 10.1007/s00032-009-0098-3.

[36]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory,, Adv. Math. Sci. Appl., 11 (2001), 505.

[37]

E. L. Reiss and B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column,, Quart. Appl. Math., 29 (1971), 245.

[38]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer, (). doi: 10.1007/978-1-4612-0645-3.

[39]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars,, J. Appl. Mech., 17 (1950), 35.

[40]

C. Zhong, Q. Ma and C. Sun, Existence of strong solutions and global attractors for the suspension bridge equations,, Nonlinear Analysis, 67 (2007), 442. doi: 10.1016/j.na.2006.05.018.

show all references

References:
[1]

A. M. Abdel-Ghaffar and L. I. Rubin, Non linear free vibrations of suspension bridges: Theory,, ASCE J. Eng. Mech., 109 (1983), 313. doi: 10.1061/(ASCE)0733-9399(1983)109:1(313).

[2]

A. M. Abdel-Ghaffar and L. I. Rubin, Non linear free vibrations of suspension bridges: Application,, ASCE J. Eng. Mech., 109 (1983), 330. doi: 10.1061/(ASCE)0733-9399(1983)109:1(330).

[3]

N. U. Ahmed and H. Harbi, Mathematical analysis of dynamic models of suspension bridges,, SIAM J. Appl. Math., 58 (1998), 853. doi: 10.1137/S0036139996308698.

[4]

Y. An, Nonlinear perturbations of a coupled system of steady state suspension bridge equations,, Nonlinear Analysis, 51 (2002), 1285. doi: 10.1016/S0362-546X(01)00899-9.

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).

[6]

J. M. Ball, Initial-boundary value problems for an extensible beam,, J. Math. Anal. Appl., 42 (1973), 61. doi: 10.1016/0022-247X(73)90121-2.

[7]

J. M. Ball, Stability theory for an extensible beam,, J. Differential Equations, 14 (1973), 399. doi: 10.1016/0022-0396(73)90056-9.

[8]

I. Bochicchio, C. Giorgi and E. Vuk, Steady states analysis and exponential stability of an extensible thermoelastic system,, Comunication to SIMAI Congress, 3 (2009), 232. doi: 10.1685/CSC09232.

[9]

I. Bochicchio, C. Giorgi and E. Vuk, Long-term damped dynamics of the extensible suspension bridge,, Int. J. Differ. Equ., 2010 (2010). doi: 10.1155/2010/383420.

[10]

I. Bochicchio and E. Vuk, Buckling and longterm dynamics of a nonlinear model for the extensible beam,, Math. Comput. Modelling, 51 (2010), 833. doi: 10.1016/j.mcm.2009.10.010.

[11]

I. Bochicchio and E. Vuk, Longtime behavior for oscillations of an extensible viscoelastic beam with elastic external supply,, Int. J. Pure Appl. Math., 58 (2010), 61.

[12]

I. Bochicchio, C. Giorgi and E. Vuk, On some nonlinear models for suspension bridges,, in Evolution Equations and Materials with Memory, (2012), 1.

[13]

I. Bochicchio, C. Giorgi and E. Vuk, Long-term dynamics of the coupled suspension bridge system,, Math. Models Methods Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500212.

[14]

I. Bochicchio, C. Giorgi and E. Vuk, Asymptotic dynamics of nonlinear coupled suspension bridge equations,, J. Math. Anal. Appl., 402 (2013), 319. doi: 10.1016/j.jmaa.2013.01.036.

[15]

I. Bochicchio, C. Giorgi and E Vuk, Long-term dynamics of a viscoelatic suspension bridge,, Meccanica, 49 (2014), 2139. doi: 10.1007/s11012-014-9887-z.

[16]

Q. H. Choi and T. Jung, A nonlinear suspension bridge equation with nonconstant load,, Nonlinear Anal., 35 (1999), 649. doi: 10.1016/S0362-546X(97)00616-0.

[17]

M. Conti, S. Gatti and V. Pata, Uniform decay properties of linear Volterra integro-differential equations,, Math. Models Methods Appl. Sci., 18 (2008), 21. doi: 10.1142/S0218202508002590.

[18]

M. Conti and and V. Pata, Weakly dissipative semilinear equations of viscoelasticity,, Commun. Pure Appl. Anal., 4 (2005), 705. doi: 10.3934/cpaa.2005.4.705.

[19]

M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory,, Indiana Univ. Math. J., 55 (2006), 169. doi: 10.1512/iumj.2006.55.2661.

[20]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam,, Discrete Contin. Dyn. Syst., 25 (2009), 1041. doi: 10.3934/dcds.2009.25.1041.

[21]

M. Coti Zelati, C. Giorgi and V. Pata, Steady states of the hinged extensible beam with external load,, Math. Models Methods Appl. Sci., 20 (2010), 43. doi: 10.1142/S0218202510004143.

[22]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rational Mech. Anal., 37 (1970), 297. doi: 0.1007/BF00251609.

[23]

P. Drábek, G. Holubová, A. Matas and P. Nečesal, Nonlinear models of suspension bridges: Discussion of the results,, Applications of Mathematics, 48 (2003), 497. doi: 10.1023/B:APOM.0000024489.96314.7f.

[24]

A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity,, North-Holland, (1994).

[25]

C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam,, Nonlinearity, 21 (2008), 713. doi: 10.1088/0951-7715/21/4/004.

[26]

C. Giorgi and E. Vuk, Steady-state solutions for a suspension bridge with intermediate supports,, Bound. Value Probl., 2013 (2013). doi: 10.1186/1687-2770-2013-204.

[27]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of a large-scale nonlinear oscillations in suspension bridge,, Z. Angew. Math. Phys., 40 (1989), 171. doi: 10.1007/BF00944997.

[28]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory,, in Evolution Equations, 50 (2002), 155.

[29]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Amer. Math. Soc., ().

[30]

G. Holubová and A. Matas, Initial-boundary problem for the nonlinear string-beam system,, J. Math. Anal. Appl., 288 (2003), 784. doi: 10.1016/j.jmaa.2003.09.028.

[31]

W. Kanok-Nukulchai, P. K. A. Yiu and D. M. Brotton, Mathematical modelling of cable-stayed bridges,, Structural Engineering International, 2 (1992), 108. doi: 10.2749/101686692780616030.

[32]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537. doi: 10.1137/1032120.

[33]

Q. Ma and C. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations,, J. Differential Equations, 246 (2009), 3755. doi: 10.1016/j.jde.2009.02.022.

[34]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,, Arch. Rational Mech. Anal., 98 (1987), 167. doi: 10.1007/BF00251232.

[35]

V. Pata, Exponential stability in linear viscoelasticity,, Quart. Applied Math., 64 (2006), 499. doi: 10.1007/s00032-009-0098-3.

[36]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory,, Adv. Math. Sci. Appl., 11 (2001), 505.

[37]

E. L. Reiss and B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column,, Quart. Appl. Math., 29 (1971), 245.

[38]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer, (). doi: 10.1007/978-1-4612-0645-3.

[39]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars,, J. Appl. Mech., 17 (1950), 35.

[40]

C. Zhong, Q. Ma and C. Sun, Existence of strong solutions and global attractors for the suspension bridge equations,, Nonlinear Analysis, 67 (2007), 442. doi: 10.1016/j.na.2006.05.018.

[1]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[2]

Luciano Pandolfi. Traction, deformation and velocity of deformation in a viscoelastic string. Evolution Equations & Control Theory, 2013, 2 (3) : 471-493. doi: 10.3934/eect.2013.2.471

[3]

M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337

[4]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[5]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[6]

Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018

[7]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[8]

Alfredo Lorenzi, Vladimir G. Romanov. Recovering two Lamé kernels in a viscoelastic system. Inverse Problems & Imaging, 2011, 5 (2) : 431-464. doi: 10.3934/ipi.2011.5.431

[9]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[10]

P. J. McKenna. Oscillations in suspension bridges, vertical and torsional. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 785-791. doi: 10.3934/dcdss.2014.7.785

[11]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[12]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[13]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[14]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[15]

W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004

[16]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[17]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[18]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

[19]

Alicia Arjona, Jesús Ildefonso Díaz. Stabilization of a hyperbolic/elliptic system modelling the viscoelastic-gravitational deformation in a multilayered Earth. Conference Publications, 2015, 2015 (special) : 66-74. doi: 10.3934/proc.2015.0066

[20]

Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) Existence and uniform boundedness. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 825-837. doi: 10.3934/dcdsb.2007.7.825

2016 Impact Factor: 0.826

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]