doi: 10.3934/dcdss.2020087

Mean periodic solutions of a inhomogeneous heat equation with random coefficients

1. 

Voronezh State University, Universitetskaya pl., 1, Voronezh, 394018, Russia

2. 

Institute of Law and Economics, Leninskii pr., 119-A, Voronezh, 394042, Russia

3. 

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Vavilova ul., 44/2, Moscow, 119333, Russia

* Corresponding author

Received  February 2018 Revised  September 2018 Published  June 2019

Fund Project: The first author is supported by the Russian Science Foundation project No. 17-11-01220

We present conditions ensuring the periodicity of the mathematical expectation of a solution of a scalar linear inhomogeneous heat equation with random coefficients where the coefficient in front of the unknown functions is Gaussian or it is uniformly distributed. The obtained results may be treated as finding a control ensuring the periodicity of the mathematical expectation of a solution of the heat equation.

Citation: Galina Kurina, Vladimir Zadorozhniy. Mean periodic solutions of a inhomogeneous heat equation with random coefficients. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020087
References:
[1]

H. Amann, Periodic solutions for semi-linear parabolic equations, in Nonlinear Analysis: A Collection of Papers in Honor of Erich Rothe, Academic Press, (1978), 1–29. Google Scholar

[2]

N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equations, Proc. Amer. Math. Soc., 106 (1989), 107-114. doi: 10.1090/S0002-9939-1989-0953007-5. Google Scholar

[3]

R. Z. Khasminskii, Ustoychivost' Sistem Differencial'nyh Uravnenii pri Sluchainykh Vozmushcheniyakh ikh Parametrov, (Russian) [Stability of Systems of Differential Equations under Random Perturbations of Their Parameters], Nauka, Moscow, 1969. Google Scholar

[4]

Yu. S. Kolesov, O nekotorykh priznakakh sushchestvovaniya ustoichivykh periodicheskikh reshenii u kvasilineinykh parabolicheskikh uravnenii, (Russian) [Some of the signs of existence of stable periodic solutions for quasilinear parabolic equations], Dokl. AN SSSR, 157 (1964), 1288-1290. Google Scholar

[5]

I. I. Shmulev, Periodicheskie resheniya pervoi kraevoi zadachi dlya parabolicheskikh uravnenii, (Russian) [Periodic solutions of the first boundary problem for pabolic equations], Matem. sb., 66 (1965), 398-410. Google Scholar

[6]

A. N. Tikhonov and A. A. Samarskii, Uravneniya Matematičesko$\check{i}$ Fiziki, (Russian) [Equations of Mathematical Physics], Nauka, Moscow, 1953. Google Scholar

[7]

V. A. Yakubovich and V. M. Starzhinskii, Lineinye Differencial'nye Uravneniya s Periodicheskimi Koefficientami i ikh Prilozheniya, (Russian) [Linear Differential Equations with Periodic Coefficients and Their Applications], Nauka, Moscow, 1972.Google Scholar

[8]

V. G. Zadorozhniy, Metody Variatsionnogo Analiza, (Russian) [Methods of Variational Analysis], NIC "Regulyarnaya i Khaoticheskaya Dinamika", Institut Kompyuternyh Issledovanii, Moscow-Izhevsk, 2006.Google Scholar

[9]

V. G. Zadorozhniy and G. A. Kurina, Periodicheskie v srednem resheniya lineinogo differencial'nogo uravneniya pervogo poryadka, (Russian) [Mean-periodic solutions of a first-order linear differential equation], Dokl. Akad. Nauk, 450 (2013), 505-510 (Engl. transl.: Dokl. Math., 87 (2013), 325-330.) doi: 10.1134/s1064562413030277. Google Scholar

[10]

V. G. Zadorozhniy and G. A. Kurina, Periodicheskie v srednem resheniya lineinogo neodnorodnogo differencial'nogo uravneniya pervogo poryadka so sluchainymi koefficientami, (Russian) [Mean periodic solutions of a linear inhomogeneous first-order differential equation with random coefficients], Differentcial'nye Uravneniya, 50 (2014), 726-744 (English transl.: Differential Equations, 50 (2014), 722-741.Google Scholar

show all references

References:
[1]

H. Amann, Periodic solutions for semi-linear parabolic equations, in Nonlinear Analysis: A Collection of Papers in Honor of Erich Rothe, Academic Press, (1978), 1–29. Google Scholar

[2]

N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equations, Proc. Amer. Math. Soc., 106 (1989), 107-114. doi: 10.1090/S0002-9939-1989-0953007-5. Google Scholar

[3]

R. Z. Khasminskii, Ustoychivost' Sistem Differencial'nyh Uravnenii pri Sluchainykh Vozmushcheniyakh ikh Parametrov, (Russian) [Stability of Systems of Differential Equations under Random Perturbations of Their Parameters], Nauka, Moscow, 1969. Google Scholar

[4]

Yu. S. Kolesov, O nekotorykh priznakakh sushchestvovaniya ustoichivykh periodicheskikh reshenii u kvasilineinykh parabolicheskikh uravnenii, (Russian) [Some of the signs of existence of stable periodic solutions for quasilinear parabolic equations], Dokl. AN SSSR, 157 (1964), 1288-1290. Google Scholar

[5]

I. I. Shmulev, Periodicheskie resheniya pervoi kraevoi zadachi dlya parabolicheskikh uravnenii, (Russian) [Periodic solutions of the first boundary problem for pabolic equations], Matem. sb., 66 (1965), 398-410. Google Scholar

[6]

A. N. Tikhonov and A. A. Samarskii, Uravneniya Matematičesko$\check{i}$ Fiziki, (Russian) [Equations of Mathematical Physics], Nauka, Moscow, 1953. Google Scholar

[7]

V. A. Yakubovich and V. M. Starzhinskii, Lineinye Differencial'nye Uravneniya s Periodicheskimi Koefficientami i ikh Prilozheniya, (Russian) [Linear Differential Equations with Periodic Coefficients and Their Applications], Nauka, Moscow, 1972.Google Scholar

[8]

V. G. Zadorozhniy, Metody Variatsionnogo Analiza, (Russian) [Methods of Variational Analysis], NIC "Regulyarnaya i Khaoticheskaya Dinamika", Institut Kompyuternyh Issledovanii, Moscow-Izhevsk, 2006.Google Scholar

[9]

V. G. Zadorozhniy and G. A. Kurina, Periodicheskie v srednem resheniya lineinogo differencial'nogo uravneniya pervogo poryadka, (Russian) [Mean-periodic solutions of a first-order linear differential equation], Dokl. Akad. Nauk, 450 (2013), 505-510 (Engl. transl.: Dokl. Math., 87 (2013), 325-330.) doi: 10.1134/s1064562413030277. Google Scholar

[10]

V. G. Zadorozhniy and G. A. Kurina, Periodicheskie v srednem resheniya lineinogo neodnorodnogo differencial'nogo uravneniya pervogo poryadka so sluchainymi koefficientami, (Russian) [Mean periodic solutions of a linear inhomogeneous first-order differential equation with random coefficients], Differentcial'nye Uravneniya, 50 (2014), 726-744 (English transl.: Differential Equations, 50 (2014), 722-741.Google Scholar

[1]

Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054

[2]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[3]

Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553

[4]

Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285

[5]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[6]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[7]

Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks & Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55

[8]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[9]

Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks & Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137

[10]

Wolfgang Wagner. A random cloud model for the Wigner equation. Kinetic & Related Models, 2016, 9 (1) : 217-235. doi: 10.3934/krm.2016.9.217

[11]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[12]

Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789

[13]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[14]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[15]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[16]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[17]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105

[18]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[19]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[20]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (31)
  • HTML views (118)
  • Cited by (0)

Other articles
by authors

[Back to Top]