doi: 10.3934/dcdss.2020060

Regional enlarged observability of Caputo fractional differential equations

1. 

TSI Team, MACS Laboratory, Department of Mathematics and Computer Science, Moulay Ismail University, Faculty of Sciences, 11201 Meknes, Morocco

2. 

Center for Research & Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810–193 Aveiro, Portugal

* Corresponding author: delfim@ua.pt

Received  April 2018 Revised  July 2018 Published  March 2019

Fund Project: This research is part of first author's Ph.D. project, which is carried out at Moulay Ismail University, Meknes

We consider the regional enlarged observability problem for fractional evolution differential equations involving Caputo derivatives. Using the Hilbert Uniqueness Method, we show that it is possible to rebuild the initial state between two prescribed functions only in an internal subregion of the whole domain. Finally, an example is provided to illustrate the theory.

Citation: Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020060
References:
[1]

S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27, Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9.

[2] R. AlmeidaS. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations, Imperial College Press, London, 2015. doi: 10.1142/p991.
[3]

M. AmourouxA. El Jaȉ and E. Zerrik, Regional observability of distributed systems, Internat. J. Systems Sci., 25 (1994), 301-313. doi: 10.1080/00207729408928961.

[4]

M. Axtell and M. E. Bise, Fractional calculus applications in control systems, IEEE Conference on Aerospace and Electronics, 2 (1990), 563-566. doi: 10.1109/NAECON.1990.112826.

[5]

D. BaleanuA. K. Golmankhaneh and A. K. Golmankhaneh, On electromagnetic field in fractional space, Nonlinear Anal. Real World Appl., 11 (2010), 288-292. doi: 10.1016/j.nonrwa.2008.10.058.

[6]

A. Carpinteri and F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer Verlag, 378 (1997), 291-348. doi: 10.1007/978-3-7091-2664-6_7.

[7]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.

[8]

A. Debbouche and D. F. M. Torres, Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions, Fract. Calc. Appl. Anal., 18 (2015), 95-121. doi: 10.1515/fca-2015-0007.

[9]

K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, in: Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer Verlag, Heidelberg, (1999), 217–224.

[10]

S. Dolecki and D. L. Russell,, A general theory of observation and control, SIAM J. Control Optimization, 15 (1977), 185-220. doi: 10.1137/0315015.

[11]

A. Dzieliński and D. Sierociuk, Ultracapacitor modelling and control using discrete fractional order state-space model, Acta Montan. Slovaca, 13 (2008), 136-145.

[12]

A. Dzieliński and D. Sierociuk, Fractional order model of beam heating process and its experimental verification, in New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, (2010), 287–294. doi: 10.1007/978-90-481-3293-5_24.

[13]

A. DzielińskiD. Sierociuk and G. Sarwas, Some applications of fractional order calculus, Bull. Polish Acad. Sci. Tech. Sci., 58 (2010), 583-592.

[14]

A. El Jaȉ and A. J. Pritchard, Capteurs et Actionneurs Dans L'analyse des Systémes Distribués, Recherches en Mathématiques Appliquées, 3, Masson, Paris, 1986.

[15]

A. El JaȉM. C. Simon and E. Zerrik, Regional observability and sensors structures, Sensors and Actuators Journal, 39 (1993), 95-102.

[16]

F. GeY. Chen and C. Kou, On the regional gradient observability of time fractional diffusion processes, Automatica J. IFAC, 74 (2016), 1-9. doi: 10.1016/j.automatica.2016.07.023.

[17]

F. Ge, Y. Q. Chen and C. Kou, Regional Analysis of Time-Fractional Diffusion Processes, Springer, Cham, 2018. doi: 10.1007/978-3-319-72896-4.

[18]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.

[19]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

[21]

M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, Czestochowa University of Technology, Czestochowa, 2009.

[22]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 2, Recherches en Mathématiques Appliquées, 9, Masson, Paris, 1988.

[23]

J.-L. Lions, Sur la contrôlabilité exacte élargie, in Partial differential equations and the calculus of variations, Vol. II, 703–727, Progr. Nonlinear Differential Equations Appl., 2, Birkhäuser Boston, Boston, MA, (1989).

[24]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House Inc., 2006.

[25]

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, arXiv: 0704.0320 (2007).

[26]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. Math., 26 (2010), 210-221.

[27]

A. Oustaloup, From fractality to non integer derivation: A fundamental idea for a new process control strategy, In: Bensoussan A., Lions J.L. (eds) Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences, 111, Springer, Berlin, Heidelberg, (1988), 53–64.

[28] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press , Inc., San Diego, CA, 1999.
[29]

A. J. Pritchard and A. Wirth, Unbounded control and observation systems and their duality, SIAM J. Control Optim., 16 (1978), 535-545. doi: 10.1137/0316036.

[30]

D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431. doi: 10.2307/2000351.

[31]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.

[32]

J. A. Tenreiro MachadoF. MainardiV. Kiryakova and T. Atanacković, Fractional calculus: D'où venons-nous Que sommes-nous? Où allons-nous, Fract. Calc. Appl. Anal., 19 (2016), 1074-1104. doi: 10.1515/fca-2016-0059.

[33]

G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math., 65 (1989), 17-43. doi: 10.1007/BF02788172.

[34]

E. H. Zerrik and and H. Bourray, Gradient observability for diffusion systems, Int. J. Appl. Math. Comput. Sci., 13 (2003), 139-150.

[35]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077. doi: 10.1016/j.camwa.2009.06.026.

show all references

References:
[1]

S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27, Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9.

[2] R. AlmeidaS. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations, Imperial College Press, London, 2015. doi: 10.1142/p991.
[3]

M. AmourouxA. El Jaȉ and E. Zerrik, Regional observability of distributed systems, Internat. J. Systems Sci., 25 (1994), 301-313. doi: 10.1080/00207729408928961.

[4]

M. Axtell and M. E. Bise, Fractional calculus applications in control systems, IEEE Conference on Aerospace and Electronics, 2 (1990), 563-566. doi: 10.1109/NAECON.1990.112826.

[5]

D. BaleanuA. K. Golmankhaneh and A. K. Golmankhaneh, On electromagnetic field in fractional space, Nonlinear Anal. Real World Appl., 11 (2010), 288-292. doi: 10.1016/j.nonrwa.2008.10.058.

[6]

A. Carpinteri and F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer Verlag, 378 (1997), 291-348. doi: 10.1007/978-3-7091-2664-6_7.

[7]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.

[8]

A. Debbouche and D. F. M. Torres, Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions, Fract. Calc. Appl. Anal., 18 (2015), 95-121. doi: 10.1515/fca-2015-0007.

[9]

K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, in: Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer Verlag, Heidelberg, (1999), 217–224.

[10]

S. Dolecki and D. L. Russell,, A general theory of observation and control, SIAM J. Control Optimization, 15 (1977), 185-220. doi: 10.1137/0315015.

[11]

A. Dzieliński and D. Sierociuk, Ultracapacitor modelling and control using discrete fractional order state-space model, Acta Montan. Slovaca, 13 (2008), 136-145.

[12]

A. Dzieliński and D. Sierociuk, Fractional order model of beam heating process and its experimental verification, in New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, (2010), 287–294. doi: 10.1007/978-90-481-3293-5_24.

[13]

A. DzielińskiD. Sierociuk and G. Sarwas, Some applications of fractional order calculus, Bull. Polish Acad. Sci. Tech. Sci., 58 (2010), 583-592.

[14]

A. El Jaȉ and A. J. Pritchard, Capteurs et Actionneurs Dans L'analyse des Systémes Distribués, Recherches en Mathématiques Appliquées, 3, Masson, Paris, 1986.

[15]

A. El JaȉM. C. Simon and E. Zerrik, Regional observability and sensors structures, Sensors and Actuators Journal, 39 (1993), 95-102.

[16]

F. GeY. Chen and C. Kou, On the regional gradient observability of time fractional diffusion processes, Automatica J. IFAC, 74 (2016), 1-9. doi: 10.1016/j.automatica.2016.07.023.

[17]

F. Ge, Y. Q. Chen and C. Kou, Regional Analysis of Time-Fractional Diffusion Processes, Springer, Cham, 2018. doi: 10.1007/978-3-319-72896-4.

[18]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.

[19]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

[21]

M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, Czestochowa University of Technology, Czestochowa, 2009.

[22]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 2, Recherches en Mathématiques Appliquées, 9, Masson, Paris, 1988.

[23]

J.-L. Lions, Sur la contrôlabilité exacte élargie, in Partial differential equations and the calculus of variations, Vol. II, 703–727, Progr. Nonlinear Differential Equations Appl., 2, Birkhäuser Boston, Boston, MA, (1989).

[24]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House Inc., 2006.

[25]

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, arXiv: 0704.0320 (2007).

[26]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. Math., 26 (2010), 210-221.

[27]

A. Oustaloup, From fractality to non integer derivation: A fundamental idea for a new process control strategy, In: Bensoussan A., Lions J.L. (eds) Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences, 111, Springer, Berlin, Heidelberg, (1988), 53–64.

[28] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press , Inc., San Diego, CA, 1999.
[29]

A. J. Pritchard and A. Wirth, Unbounded control and observation systems and their duality, SIAM J. Control Optim., 16 (1978), 535-545. doi: 10.1137/0316036.

[30]

D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431. doi: 10.2307/2000351.

[31]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.

[32]

J. A. Tenreiro MachadoF. MainardiV. Kiryakova and T. Atanacković, Fractional calculus: D'où venons-nous Que sommes-nous? Où allons-nous, Fract. Calc. Appl. Anal., 19 (2016), 1074-1104. doi: 10.1515/fca-2016-0059.

[33]

G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math., 65 (1989), 17-43. doi: 10.1007/BF02788172.

[34]

E. H. Zerrik and and H. Bourray, Gradient observability for diffusion systems, Int. J. Appl. Math. Comput. Sci., 13 (2003), 139-150.

[35]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077. doi: 10.1016/j.camwa.2009.06.026.

[1]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[2]

Venkatesan Govindaraj, Raju K. George. Controllability of fractional dynamical systems: A functional analytic approach. Mathematical Control & Related Fields, 2017, 7 (4) : 537-562. doi: 10.3934/mcrf.2017020

[3]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[4]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[5]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[6]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[7]

Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024

[8]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[9]

Louis Tcheugoue Tebou. Equivalence between observability and stabilization for a class of second order semilinear evolution. Conference Publications, 2009, 2009 (Special) : 744-752. doi: 10.3934/proc.2009.2009.744

[10]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[11]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[12]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 695-708. doi: 10.3934/dcdss.2020038

[13]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[14]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018317

[15]

Darko Volkov, Joan Calafell Sandiumenge. A stochastic approach to reconstruction of faults in elastic half space. Inverse Problems & Imaging, 2019, 13 (3) : 479-511. doi: 10.3934/ipi.2019024

[16]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

[17]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[18]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[19]

Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093

[20]

Akio Ito, Noriaki Yamazaki, Nobuyuki Kenmochi. Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces. Conference Publications, 1998, 1998 (Special) : 327-349. doi: 10.3934/proc.1998.1998.327

2017 Impact Factor: 0.561

Article outline

[Back to Top]