• Previous Article
    A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative
  • DCDS-S Home
  • This Issue
  • Next Article
    MHD natural convection boundary-layer flow over a semi-infinite heated plate with arbitrary inclination
doi: 10.3934/dcdss.2020058

Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel

1. 

Faculty of Science, Department of Mathematics-Computer Sciences, Necmettin Erbakan University, Konya, 42090, Turkey

2. 

Faculty of Sciences and Arts, Department of Mathematics, Balıkesir University, Balıkesir, 10145, Turkey

* Corresponding author: mehmetyavuz@erbakan.edu.tr

Received  August 2018 Revised  September 2018 Published  March 2019

In this manuscript, we have proposed a comparison based on newly defined fractional derivative operators which are called as Caputo-Fabrizio (CF) and Atangana-Baleanu (AB). In 2015, Caputo and Fabrizio established a new fractional operator by using exponential kernel. After one year, Atangana and Baleanu recommended a different-type fractional operator that uses the generalized Mittag-Leffler function (MLF). Many real-life problems can be modelled and can be solved by numerical-analytical solution methods which are derived with these operators. In this paper, we suggest an approximate solution method for PDEs of fractional order by using the mentioned operators. We consider the Laplace homotopy transformation method (LHTM) which is the combination of standard homotopy technique (SHT) and Laplace transformation method (LTM). In this study, we aim to demonstrate the effectiveness of the aforementioned method by comparing the solutions we have achieved with the exact solutions. Furthermore, by constructing the error analysis, we test the practicability and usefulness of the method.

Citation: Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020058
References:
[1]

T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107, arXiv: 1607.00262. doi: 10.22436/jnsa.010.03.20.

[2]

B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 539-546. doi: 10.1016/j.chaos.2016.03.012.

[3]

B. S. T. Alkahtani and A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 566-571. doi: 10.1016/j.chaos.2016.03.027.

[4]

B. S. T. Alkahtani, Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 547-551.

[5]

O. J. J. Alkahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons & Fractals, 89 (2016), 552-559. doi: 10.1016/j.chaos.2016.03.026.

[6]

R. T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer, Journal of Nonlinear Sciences and Applications, 9 (2016), 3647-3654. doi: 10.22436/jnsa.009.06.17.

[7]

F. A. M. N. Al-Salti and E. Karimov, Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, preprint, arXiv: 1706.00740.

[8]

N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 22 (2016), 763-769. doi: 10.2298/TSCI160111018A.

[10]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480. doi: 10.22436/jnsa.009.05.46.

[11]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012.

[12]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654. doi: 10.22436/jnsa.009.06.17.

[13]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.

[14]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent I, Geophysical Journal International, 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x.

[15]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, Journal of Electromagnetic Waves and Applications, 30 (2016), 1937-1952. doi: 10.1080/09205071.2016.1225521.

[16]

J. F. Gómez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernández, D. Baleanu, R. F. Escobar-Jiménez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville aputo operators with local and non-local kernels, Entropy, 18 (2016), 402. doi: 10.3390/e18080402.

[17]

J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762. doi: 10.2298/TSCI160112019H.

[18]

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 21 (2017), 827-839. doi: 10.2298/TSCI160229115H.

[19]

I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Thermal Science, 21 (2017), 2299-2305. doi: 10.2298/TSCI160209103K.

[20]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.

[21]

Z. Odibat and S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 2199-2208. doi: 10.1016/j.camwa.2009.03.009.

[22]

N. A. SheikhF. AliM. SaqibI. KhanS. A. A. JanA. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800. doi: 10.1016/j.rinp.2017.01.025.

[23]

N. A. Sheikh, F. Ali, M. Saqib, I. Khan and S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 54. doi: 10.1140/epjp/i2017-11326-y.

[24]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515. doi: 10.1016/j.amc.2017.08.048.

[25]

M. Yavuz and N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2 (2018), 3. doi: 10.3390/fractalfract2010003.

[26]

M. Yavuz, N. Ozdemir and H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215. doi: 10.1140/epjp/i2018-12051-9.

show all references

References:
[1]

T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107, arXiv: 1607.00262. doi: 10.22436/jnsa.010.03.20.

[2]

B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 539-546. doi: 10.1016/j.chaos.2016.03.012.

[3]

B. S. T. Alkahtani and A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 566-571. doi: 10.1016/j.chaos.2016.03.027.

[4]

B. S. T. Alkahtani, Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 547-551.

[5]

O. J. J. Alkahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons & Fractals, 89 (2016), 552-559. doi: 10.1016/j.chaos.2016.03.026.

[6]

R. T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer, Journal of Nonlinear Sciences and Applications, 9 (2016), 3647-3654. doi: 10.22436/jnsa.009.06.17.

[7]

F. A. M. N. Al-Salti and E. Karimov, Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, preprint, arXiv: 1706.00740.

[8]

N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 22 (2016), 763-769. doi: 10.2298/TSCI160111018A.

[10]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480. doi: 10.22436/jnsa.009.05.46.

[11]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012.

[12]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654. doi: 10.22436/jnsa.009.06.17.

[13]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.

[14]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent I, Geophysical Journal International, 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x.

[15]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, Journal of Electromagnetic Waves and Applications, 30 (2016), 1937-1952. doi: 10.1080/09205071.2016.1225521.

[16]

J. F. Gómez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernández, D. Baleanu, R. F. Escobar-Jiménez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville aputo operators with local and non-local kernels, Entropy, 18 (2016), 402. doi: 10.3390/e18080402.

[17]

J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762. doi: 10.2298/TSCI160112019H.

[18]

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 21 (2017), 827-839. doi: 10.2298/TSCI160229115H.

[19]

I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Thermal Science, 21 (2017), 2299-2305. doi: 10.2298/TSCI160209103K.

[20]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.

[21]

Z. Odibat and S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 2199-2208. doi: 10.1016/j.camwa.2009.03.009.

[22]

N. A. SheikhF. AliM. SaqibI. KhanS. A. A. JanA. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800. doi: 10.1016/j.rinp.2017.01.025.

[23]

N. A. Sheikh, F. Ali, M. Saqib, I. Khan and S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 54. doi: 10.1140/epjp/i2017-11326-y.

[24]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515. doi: 10.1016/j.amc.2017.08.048.

[25]

M. Yavuz and N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2 (2018), 3. doi: 10.3390/fractalfract2010003.

[26]

M. Yavuz, N. Ozdemir and H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215. doi: 10.1140/epjp/i2018-12051-9.

Figure 1.  The solution function of (29) in the CFO sense for $ x = 0.5 $ (left) and $ x = 1 $ (right)
Figure 2.  The solution function of (29) in the ABO sense for $ x = 0.5 $ (left) and $ x = 1 $ (right)
Figure 3.  The solution of Eq. (37) in the CFO sense for various values of $ \alpha . $
Figure 4.  The solution function of (45) in the ABO sense for various values of $ \alpha = 0.7 $ (left) and $ \alpha = 0.9 $ (right)
Figure 5.  Inaccuracy rates (%) of the mentioned method
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 937-956. doi: 10.3934/dcdss.2020055

[3]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[4]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 377-387. doi: 10.3934/dcdss.2020021

[5]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018317

[6]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[7]

Badr Saad T. Alkahtani, Ilknur Koca. A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 429-442. doi: 10.3934/dcdss.2020024

[8]

G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 485-501. doi: 10.3934/dcdss.2020027

[9]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[10]

Daniele Bartoli, Leo Storme. On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric. Advances in Mathematics of Communications, 2014, 8 (3) : 271-280. doi: 10.3934/amc.2014.8.271

[11]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[12]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060

[13]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[14]

Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185

[15]

Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure & Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547

[16]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[17]

Shantanu Das. Memorized relaxation with singular and non-singular memory kernels for basic relaxation of dielectric vis-à-vis Curie-von Schweidler & Kohlrausch relaxation laws. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 575-607. doi: 10.3934/dcdss.2020032

[18]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[19]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[20]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (48)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]