doi: 10.3934/dcdss.2020046

Mathematical modeling approach to the fractional Bergman's model

1. 

Facultad de Matemáticas. Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. Universitaria, Chilpancingo, Guerrero, México

2. 

CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca Morelos, México

* Corresponding authors: J. F. Gómez-Aguilar and M. A. Taneco-Hernández

Received  June 2018 Revised  August 2018 Published  March 2019

This paper presents the solution for a fractional Bergman's minimal blood glucose-insulin model expressed by Atangana-Baleanu-Caputo fractional order derivative and fractional conformable derivative in Liouville-Caputo sense. Applying homotopy analysis method and Laplace transform with homotopy polynomial we obtain analytical approximate solutions for both derivatives. Finally, some numerical simulations are carried out for illustrating the results obtained. In addition, the calculations involved in the modified homotopy analysis transform method are simple and straightforward.

Citation: Victor Fabian Morales-Delgado, José Francisco Gómez-Aguilar, Marco Antonio Taneco-Hernández. Mathematical modeling approach to the fractional Bergman's model. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020046
References:
[1]

B. S. Alkahtani, O. J. Algahtani, R. S. Dubey and P. Goswami, The solution of modified fractional bergman's minimal blood glucose-insulin model, Entropy, 19 (2017), 114. doi: 10.3390/e19050114. Google Scholar

[2] A. Atangana, Derivative with a New Parameter: Theory, Methods and Applications, Academic Press, New York, 2016. doi: 10.1016/B978-0-08-100644-3.00001-5.
[3] A. Atangana, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology, Academic Press, London, 2018.
[4]

A. Atangana and K. M. Owolabi., New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), 1-21. doi: 10.1051/mmnp/2018010. Google Scholar

[5]

A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos, Solitons & Fractals, 114 (2018), 347-363. doi: 10.1016/j.chaos.2018.07.022. Google Scholar

[6]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706. doi: 10.1016/j.physa.2018.03.056. Google Scholar

[7]

A. Atangana and J. F. Gómez Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 1-23. Google Scholar

[8]

A. Atangana and E. F. D. Goufo, On the mathematical analysis of Ebola hemorrhagic fever: Deathly infection disease in West African countries, BioMed Research International, 2014 (2014), Article ID 261383, 7 pages. doi: 10.1155/2014/261383. Google Scholar

[9]

A. Atangana and B. S. T. Alkahtani, Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter, Complexity, 21 (2016), 442-451. doi: 10.1002/cplx.21704. Google Scholar

[10]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A. Google Scholar

[11]

R. N. BergmanY. Z. IderC. R. Bowden and C. Cobelli, Quantitative estimation of insulin sensitivity, American Journal of Physiology-Endocrinology And Metabolism, 236 (1979), 667-677. doi: 10.1152/ajpendo.1979.236.6.E667. Google Scholar

[12]

A. CaumoC. Cobelli and M. Omenetto, Overestimation of minimal model glucose effectiveness in presence of insulin response is due to under modeling, American Journal of Physiology, 278 (1999), 481-488. Google Scholar

[13]

A. De Gaetano and O. Arino, Mathematical modelling of the intravenous glucose tolerance test, Journal of Mathematical Biology, 40 (2000), 136-168. doi: 10.1007/s002850050007. Google Scholar

[14]

L. C. GatewoodE. AckermanJ. W. RosevearG. D. Molnar and T. W. Burns, Tests of a mathematical model of the blood-glucose regulatory system, Computional Biomedical Research, 2 (1968), 1-14. doi: 10.1016/0010-4809(68)90003-7. Google Scholar

[15]

A. Fabre and J. Hristov, On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity, Heat and Mass Transfer, 53 (2017), 177-204. doi: 10.1007/s00231-016-1806-5. Google Scholar

[16]

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 1 (2016), 115-115. Google Scholar

[17]

R. JainK. Arekar and R. Shanker Dubey, Study of Bergman's minimal blood glucose-insulin model by Adomian decomposition method, Journal of Information and Optimization Sciences, 38 (2017), 133-149. doi: 10.1080/02522667.2016.1187919. Google Scholar

[18]

F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Advances in Difference Equations, 2017 (2017), Paper No. 247, 16 pp. doi: 10.1186/s13662-017-1306-z. Google Scholar

[19]

R. KhalilM. Al HoraniA. Yousef and M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002. Google Scholar

[20]

S. KumarA. Kumar and I. K. Argyros, A new analysis for the Keller-Segel model of fractional order, Numerical Algorithms, 75 (2017), 213-228. doi: 10.1007/s11075-016-0202-z. Google Scholar

[21]

S. Kumar, A new analytical modelling for telegraph equation via Laplace transform, Appl. Math. Modell, 38 (2014), 3154-3163. doi: 10.1016/j.apm.2013.11.035. Google Scholar

[22]

S. Kumar and M. M. Rashidi, New analytical method for gas dynamic equation arising in shock fronts, Comput. Phy. Commun, 185 (2014), 1947-1954. doi: 10.1016/j.cpc.2014.03.025. Google Scholar

[23]

G. A. Losa, On the fractal design in human brain and nervous tissue, Applied Mathematics, 5 (2014), 1725-1732. doi: 10.4236/am.2014.512165. Google Scholar

[24]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, S. Kumar and M. A. Taneco-Hernández, Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel, The European Physical Journal Plus, 133 (2018), 200. doi: 10.1140/epjp/i2018-12038-6. Google Scholar

[25]

Z. Odibat and A. S. Bataineh, An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: Construction of homotopy polynomials, Math. Meth. Appl. Sci, 38 (2015), 991-1000. doi: 10.1002/mma.3136. Google Scholar

[26]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317. doi: 10.1016/j.cnsns.2016.08.021. Google Scholar

[27]

K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, The European physical Journal Plus, 131 (2016), 335. doi: 10.1140/epjp/i2016-16335-8. Google Scholar

[28] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Academic Press, an Diego, California, USA, 1999.

show all references

References:
[1]

B. S. Alkahtani, O. J. Algahtani, R. S. Dubey and P. Goswami, The solution of modified fractional bergman's minimal blood glucose-insulin model, Entropy, 19 (2017), 114. doi: 10.3390/e19050114. Google Scholar

[2] A. Atangana, Derivative with a New Parameter: Theory, Methods and Applications, Academic Press, New York, 2016. doi: 10.1016/B978-0-08-100644-3.00001-5.
[3] A. Atangana, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology, Academic Press, London, 2018.
[4]

A. Atangana and K. M. Owolabi., New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), 1-21. doi: 10.1051/mmnp/2018010. Google Scholar

[5]

A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos, Solitons & Fractals, 114 (2018), 347-363. doi: 10.1016/j.chaos.2018.07.022. Google Scholar

[6]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706. doi: 10.1016/j.physa.2018.03.056. Google Scholar

[7]

A. Atangana and J. F. Gómez Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 1-23. Google Scholar

[8]

A. Atangana and E. F. D. Goufo, On the mathematical analysis of Ebola hemorrhagic fever: Deathly infection disease in West African countries, BioMed Research International, 2014 (2014), Article ID 261383, 7 pages. doi: 10.1155/2014/261383. Google Scholar

[9]

A. Atangana and B. S. T. Alkahtani, Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter, Complexity, 21 (2016), 442-451. doi: 10.1002/cplx.21704. Google Scholar

[10]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A. Google Scholar

[11]

R. N. BergmanY. Z. IderC. R. Bowden and C. Cobelli, Quantitative estimation of insulin sensitivity, American Journal of Physiology-Endocrinology And Metabolism, 236 (1979), 667-677. doi: 10.1152/ajpendo.1979.236.6.E667. Google Scholar

[12]

A. CaumoC. Cobelli and M. Omenetto, Overestimation of minimal model glucose effectiveness in presence of insulin response is due to under modeling, American Journal of Physiology, 278 (1999), 481-488. Google Scholar

[13]

A. De Gaetano and O. Arino, Mathematical modelling of the intravenous glucose tolerance test, Journal of Mathematical Biology, 40 (2000), 136-168. doi: 10.1007/s002850050007. Google Scholar

[14]

L. C. GatewoodE. AckermanJ. W. RosevearG. D. Molnar and T. W. Burns, Tests of a mathematical model of the blood-glucose regulatory system, Computional Biomedical Research, 2 (1968), 1-14. doi: 10.1016/0010-4809(68)90003-7. Google Scholar

[15]

A. Fabre and J. Hristov, On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity, Heat and Mass Transfer, 53 (2017), 177-204. doi: 10.1007/s00231-016-1806-5. Google Scholar

[16]

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 1 (2016), 115-115. Google Scholar

[17]

R. JainK. Arekar and R. Shanker Dubey, Study of Bergman's minimal blood glucose-insulin model by Adomian decomposition method, Journal of Information and Optimization Sciences, 38 (2017), 133-149. doi: 10.1080/02522667.2016.1187919. Google Scholar

[18]

F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Advances in Difference Equations, 2017 (2017), Paper No. 247, 16 pp. doi: 10.1186/s13662-017-1306-z. Google Scholar

[19]

R. KhalilM. Al HoraniA. Yousef and M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002. Google Scholar

[20]

S. KumarA. Kumar and I. K. Argyros, A new analysis for the Keller-Segel model of fractional order, Numerical Algorithms, 75 (2017), 213-228. doi: 10.1007/s11075-016-0202-z. Google Scholar

[21]

S. Kumar, A new analytical modelling for telegraph equation via Laplace transform, Appl. Math. Modell, 38 (2014), 3154-3163. doi: 10.1016/j.apm.2013.11.035. Google Scholar

[22]

S. Kumar and M. M. Rashidi, New analytical method for gas dynamic equation arising in shock fronts, Comput. Phy. Commun, 185 (2014), 1947-1954. doi: 10.1016/j.cpc.2014.03.025. Google Scholar

[23]

G. A. Losa, On the fractal design in human brain and nervous tissue, Applied Mathematics, 5 (2014), 1725-1732. doi: 10.4236/am.2014.512165. Google Scholar

[24]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, S. Kumar and M. A. Taneco-Hernández, Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel, The European Physical Journal Plus, 133 (2018), 200. doi: 10.1140/epjp/i2018-12038-6. Google Scholar

[25]

Z. Odibat and A. S. Bataineh, An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: Construction of homotopy polynomials, Math. Meth. Appl. Sci, 38 (2015), 991-1000. doi: 10.1002/mma.3136. Google Scholar

[26]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317. doi: 10.1016/j.cnsns.2016.08.021. Google Scholar

[27]

K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, The European physical Journal Plus, 131 (2016), 335. doi: 10.1140/epjp/i2016-16335-8. Google Scholar

[28] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Academic Press, an Diego, California, USA, 1999.
Figure 2.  Numerical simulations for the blood glucose concentration $G(t)$ , the effect of active insulin $X(t)$ and the blood insulin concentration $I(t)$ for several values of $\alpha_1-\beta$ , $\alpha_2-\beta$ and $\alpha_3-\beta$ .
Figure 1.  Numerical simulations for the blood glucose concentration G(t), the effect of active insulin X(t) and the blood insulin concentration I(t) for several values of α, β and γ.
Table 1.  Description of parameters in system (4)
Parameter Description Unit
$G_b$ Basal blood glucose concentration mg/dL
$I_b$ Basal blood insuline concentration mU/L
$p_1$ Insulin-independent glucose clearance rate 1/min
$p_2$ Active insulin clearance rate 1/min
$p_3$ Increase in uptake ability caused by insulin L/min $^{2}$ $\cdot$ mU
$p_4$ Decay rate of blood insulin 1/min
$p_5$ The target glucose level mg/dL
$p_6$ Pancreatic release rate after glucose bolus mU $\cdot$ dL/L $\cdot$ mg $\cdot$ min
Parameter Description Unit
$G_b$ Basal blood glucose concentration mg/dL
$I_b$ Basal blood insuline concentration mU/L
$p_1$ Insulin-independent glucose clearance rate 1/min
$p_2$ Active insulin clearance rate 1/min
$p_3$ Increase in uptake ability caused by insulin L/min $^{2}$ $\cdot$ mU
$p_4$ Decay rate of blood insulin 1/min
$p_5$ The target glucose level mg/dL
$p_6$ Pancreatic release rate after glucose bolus mU $\cdot$ dL/L $\cdot$ mg $\cdot$ min
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 937-956. doi: 10.3934/dcdss.2020055

[2]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[3]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[4]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 377-387. doi: 10.3934/dcdss.2020021

[5]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 755-768. doi: 10.3934/dcdss.2020042

[6]

G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 485-501. doi: 10.3934/dcdss.2020027

[7]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[8]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[9]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[10]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[11]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[12]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[13]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 797-804. doi: 10.3934/dcdss.2020045

[14]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[15]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 741-754. doi: 10.3934/dcdss.2020041

[16]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 723-739. doi: 10.3934/dcdss.2020040

[17]

Dong-Hui Li, Xiao-Lin Wang. A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 71-82. doi: 10.3934/naco.2011.1.71

[18]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[19]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[20]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[Back to Top]