doi: 10.3934/dcdss.2020043

Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heating

1. 

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2. 

Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000, Pakistan

3. 

Department of Applied Mathematics, Princess Nourah bint Abdulrahman University Riyadh, Saudi Arabia

* Corresponding author: Ilyas Khan, ilyaskhan@tdt.edu.vn

Received  March 2018 Revised  May 2018 Published  March 2019

The present article deals to study heat transfer analysis due to convection occurs in a fractionalized H2O-based CNTs nanofluids flowing through a vertical channel. The problem is modeled in terms of fractional partial differential equations using a modern trend of the fractional derivative of Atangana and Baleanu. The governing equation (momentum and energy equations) are subjected to physical initial and boundary conditions. The fractional Laplace transformation is used to obtain solutions in the transform domain. To obtain semi-analytical solutions for velocity and temperature distributions, the Zakian's algorithm is utilized for the Laplace inversions. For validation, the obtained solutions are compared in tabular form using Tzou's and Stehfest's numerical methods for Laplace inversion. The influence of fractional parameter is studied and presented in graphs and discussed.

Citation: Ilyas Khan, Muhammad Saqib, Aisha M. Alqahtani. Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heating. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020043
References:
[1]

A. A. AlrashedO. A. AkbariA. HeydariD. ToghraieM. ZarringhalamG. A. S. ShabaniA. R. Seifi and M. Goodarzi, The numerical modeling of water/fmwcnt nanofluid flow and heat transfer in a backward-facing contracting channel, Physica B: Condensed Matter, 537 (2018), 176-183. doi: 10.1016/j.physb.2018.02.022.

[2]

S. AmanI. KhanZ. IsmailM. Z. SallehA. S. Alshomrani and M. S. Alghamdi, Magnetic field effect on poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with casson fluid, AIP Advances, 7 (2017), 015036. doi: 10.1063/1.4975219.

[3]

S. Aminossadati and B. Ghasemi, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics-B/Fluids, 28 (2009), 630-640. doi: 10.1016/j.euromechflu.2009.05.006.

[4]

A. ArabpourA. Karimipour and D. Toghraie, The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (mwcnts) nanofluid in the microchannel heat sink with slip boundary condition, Journal of Thermal Analysis and Calorimetry, 131 (2018), 1553-1566. doi: 10.1007/s10973-017-6649-x.

[5]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with markovian and non-markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706. doi: 10.1016/j.physa.2018.03.056.

[6]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Chaos, 28 (2018), 063109, 6 pp, arXiv:1602.03408. doi: 10.1063/1.5026284.

[7]

A. Atangana and J. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166. doi: 10.1140/epjp/i2018-12021-3.

[8]

W. A. AzharD. Vieru and C. Fetecau, Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source, Physics of Fluids, 29 (2017), 082001. doi: 10.1063/1.4996034.

[9]

H. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20 (1952), 571-571. doi: 10.1063/1.1700493.

[10]

S. Chol and J. Estman, "Enhancing thermal conductivity of fluids with nanoparticles," ASME-Publications-Fed, vol. 231, pp. 99-106, 1995.

[11]

C. FetecauD. Vieru and W. A. Azhar, Natural convection flow of fractional nanofluids over an isothermal vertical plate with thermal radiation, Applied Sciences, 7 (2017), 247. doi: 10.3390/app7030247.

[12]

R. GanvirP. Walke and V. Kriplani, Heat transfer characteristics in nanofluid-a review, Renewable and Sustainable Energy Reviews, 75 (2017), 451-460. doi: 10.1016/j.rser.2016.11.010.

[13]

D. Halsted and D. Brown, Zakian's technique for inverting laplace transforms, The Chemical Engineering Journal, 3 (1972), 312-313. doi: 10.1016/0300-9467(72)85037-8.

[14]

R. U. HaqF. Shahzad and Q. M. Al-Mdallal, Mhd pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders, Results in Physics, 7 (2017), 57-68. doi: 10.1016/j.rinp.2016.11.057.

[15]

M. HassanA. Faisal and M. M. Bhatti, Interaction of aluminum oxide nanoparticles with flow of polyvinyl alcohol solutions base nanofluids over a wedge, Applied Nanoscience, 8 (2018), 53-60. doi: 10.1007/s13204-018-0651-x.

[16]

S. Iijima, Helical microtubules of graphitic carbon, nature, 354 (1991), 56-58. doi: 10.1038/354056a0.

[17]

S. A. A. JanF. AliN. A. SheikhI. KhanM. Saqib and M. Gohar, Engine oil based generalized brinkman-type nano-liquid with molybdenum disulphide nanoparticles of spherical shape: Atangana-baleanu fractional model, Numerical Methods for Partial Differential Equations, 34 (2018), 1472-1488. doi: 10.1002/num.22200.

[18]

M. H. Matin and I. Pop, Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall, International Communications in Heat and Mass Transfer, 46 (2013), 134-141. doi: 10.1016/j.icheatmasstransfer.2013.05.001.

[19]

S. S. MurshedC. N. De CastroM. LourençoM. Lopes and F. Santos, A review of boiling and convective heat transfer with nanofluids, Renewable and Sustainable Energy Reviews, 15 (2011), 2342-2354. doi: 10.1016/j.rser.2011.02.016.

[20]

M. R. SafaeiG. AhmadiM. S. GoodarziA. Kamyar and S. Kazi, Boundary layer flow and heat transfer of fmwcnt/water nanofluids over a flat plate, Fluids, 1 (2016), 31. doi: 10.3390/fluids1040031.

[21]

M. SaqibF. AliI. KhanN. A. Sheikh and S. B. Shafie, Convection in ethylene glycol-based molybdenum disulfide nanofluid, Journal of Thermal Analysis and Calorimetry, (2018), 1-10. doi: 10.1007/s10973-018-7054-9.

[22]

N. A. Sheikh, F. Ali, I. Khan, M. Gohar and M. Saqib, On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of atangana-baleanu and caputo-fabrizio fractional models, The European Physical Journal Plus, 132 (2017), 540.

[23]

A. A. TateishiH. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 52.

[24]

D. Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior, John Wiley & Sons, 2014. doi: 10.1002/9781118818275.

[25]

Q. Wang and H. Zhan, On different numerical inverse laplace methods for solute transport problems, Advances in Water Resources, 75 (2015), 80-92. doi: 10.1016/j.advwatres.2014.11.001.

[26]

Q. Xue, Model for thermal conductivity of carbon nanotube-based composites, Physica B: Condensed Matter, 368 (2005), 302-307. doi: 10.1016/j.physb.2005.07.024.

[27]

V. Zakian and R. Littlewood, Numerical inversion of laplace transforms by weighted least-squares approximation, The Computer Journal, 16 (1973), 66-68. doi: 10.1093/comjnl/16.1.66.

show all references

References:
[1]

A. A. AlrashedO. A. AkbariA. HeydariD. ToghraieM. ZarringhalamG. A. S. ShabaniA. R. Seifi and M. Goodarzi, The numerical modeling of water/fmwcnt nanofluid flow and heat transfer in a backward-facing contracting channel, Physica B: Condensed Matter, 537 (2018), 176-183. doi: 10.1016/j.physb.2018.02.022.

[2]

S. AmanI. KhanZ. IsmailM. Z. SallehA. S. Alshomrani and M. S. Alghamdi, Magnetic field effect on poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with casson fluid, AIP Advances, 7 (2017), 015036. doi: 10.1063/1.4975219.

[3]

S. Aminossadati and B. Ghasemi, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics-B/Fluids, 28 (2009), 630-640. doi: 10.1016/j.euromechflu.2009.05.006.

[4]

A. ArabpourA. Karimipour and D. Toghraie, The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (mwcnts) nanofluid in the microchannel heat sink with slip boundary condition, Journal of Thermal Analysis and Calorimetry, 131 (2018), 1553-1566. doi: 10.1007/s10973-017-6649-x.

[5]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with markovian and non-markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706. doi: 10.1016/j.physa.2018.03.056.

[6]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Chaos, 28 (2018), 063109, 6 pp, arXiv:1602.03408. doi: 10.1063/1.5026284.

[7]

A. Atangana and J. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166. doi: 10.1140/epjp/i2018-12021-3.

[8]

W. A. AzharD. Vieru and C. Fetecau, Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source, Physics of Fluids, 29 (2017), 082001. doi: 10.1063/1.4996034.

[9]

H. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20 (1952), 571-571. doi: 10.1063/1.1700493.

[10]

S. Chol and J. Estman, "Enhancing thermal conductivity of fluids with nanoparticles," ASME-Publications-Fed, vol. 231, pp. 99-106, 1995.

[11]

C. FetecauD. Vieru and W. A. Azhar, Natural convection flow of fractional nanofluids over an isothermal vertical plate with thermal radiation, Applied Sciences, 7 (2017), 247. doi: 10.3390/app7030247.

[12]

R. GanvirP. Walke and V. Kriplani, Heat transfer characteristics in nanofluid-a review, Renewable and Sustainable Energy Reviews, 75 (2017), 451-460. doi: 10.1016/j.rser.2016.11.010.

[13]

D. Halsted and D. Brown, Zakian's technique for inverting laplace transforms, The Chemical Engineering Journal, 3 (1972), 312-313. doi: 10.1016/0300-9467(72)85037-8.

[14]

R. U. HaqF. Shahzad and Q. M. Al-Mdallal, Mhd pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders, Results in Physics, 7 (2017), 57-68. doi: 10.1016/j.rinp.2016.11.057.

[15]

M. HassanA. Faisal and M. M. Bhatti, Interaction of aluminum oxide nanoparticles with flow of polyvinyl alcohol solutions base nanofluids over a wedge, Applied Nanoscience, 8 (2018), 53-60. doi: 10.1007/s13204-018-0651-x.

[16]

S. Iijima, Helical microtubules of graphitic carbon, nature, 354 (1991), 56-58. doi: 10.1038/354056a0.

[17]

S. A. A. JanF. AliN. A. SheikhI. KhanM. Saqib and M. Gohar, Engine oil based generalized brinkman-type nano-liquid with molybdenum disulphide nanoparticles of spherical shape: Atangana-baleanu fractional model, Numerical Methods for Partial Differential Equations, 34 (2018), 1472-1488. doi: 10.1002/num.22200.

[18]

M. H. Matin and I. Pop, Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall, International Communications in Heat and Mass Transfer, 46 (2013), 134-141. doi: 10.1016/j.icheatmasstransfer.2013.05.001.

[19]

S. S. MurshedC. N. De CastroM. LourençoM. Lopes and F. Santos, A review of boiling and convective heat transfer with nanofluids, Renewable and Sustainable Energy Reviews, 15 (2011), 2342-2354. doi: 10.1016/j.rser.2011.02.016.

[20]

M. R. SafaeiG. AhmadiM. S. GoodarziA. Kamyar and S. Kazi, Boundary layer flow and heat transfer of fmwcnt/water nanofluids over a flat plate, Fluids, 1 (2016), 31. doi: 10.3390/fluids1040031.

[21]

M. SaqibF. AliI. KhanN. A. Sheikh and S. B. Shafie, Convection in ethylene glycol-based molybdenum disulfide nanofluid, Journal of Thermal Analysis and Calorimetry, (2018), 1-10. doi: 10.1007/s10973-018-7054-9.

[22]

N. A. Sheikh, F. Ali, I. Khan, M. Gohar and M. Saqib, On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of atangana-baleanu and caputo-fabrizio fractional models, The European Physical Journal Plus, 132 (2017), 540.

[23]

A. A. TateishiH. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 52.

[24]

D. Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior, John Wiley & Sons, 2014. doi: 10.1002/9781118818275.

[25]

Q. Wang and H. Zhan, On different numerical inverse laplace methods for solute transport problems, Advances in Water Resources, 75 (2015), 80-92. doi: 10.1016/j.advwatres.2014.11.001.

[26]

Q. Xue, Model for thermal conductivity of carbon nanotube-based composites, Physica B: Condensed Matter, 368 (2005), 302-307. doi: 10.1016/j.physb.2005.07.024.

[27]

V. Zakian and R. Littlewood, Numerical inversion of laplace transforms by weighted least-squares approximation, The Computer Journal, 16 (1973), 66-68. doi: 10.1093/comjnl/16.1.66.

Figure 1.  Flow configuration and coordinate system
Figure 2.  Variation of the velocity profile for water-based MWCNT nanofluid due to $ \alpha $when $ \phi = 0.03\, \mathit{\rm{and}}\, Gr = 5 $
Figure 3.  Variation of the temperature profile for water-based MWCNT nanofluid due to $ \alpha $when $ \phi = 0.03. $
Figure 4.  Variation of the velocity profile for water based MWCNT nanofluid due to $ \phi $when $ \phi = 0.5\, \mathit{\rm{and}}\, Gr = 5 $
Figure 5.  Variation of the temperature profile for water-based MWCNT nanofluid due to $ \phi $when $ \phi = 0.5\, \mathit{\rm{and}}\, Gr = 5 $
Figure 6.  Comparison of velocity profiles for water-based MWCNT and SWCNT nanofluids when $ \alpha = 0.5,\, \phi = 0.3\, \mathit{\rm{and}}\, Gr = 5 $
Figure 7.  Comparison of temperature profiles for water-based MWCNT and SWCNT nanofluids when $ \alpha = 0.5,\, \phi = 0.3\, \mathit{\rm{and}}\, Gr = 5 $
Figure 8.  Comparison of velocity profile using different algorithms
Figure 9.  Comparison of temperature distribution using different algorithms
Table 1.  Thermophysical properties of water and CNTs nanoparticles
Material Base fluid Nanoparticles
Water MWCNT SWCNT
$ {\rho \left( {{\rm{kg}}/{{\rm{m}}^3}} \right)} $ 997 1600 2600
$ {C_p}\left( {{\rm{J}}/{\rm{kg}}\;{\rm{K}}} \right)$ 4179 796 425
$ {K\left( {{\rm{W}}/{\rm{mK}}} \right)}$ 0.613 6600
Pr 6.2 - -
Material Base fluid Nanoparticles
Water MWCNT SWCNT
$ {\rho \left( {{\rm{kg}}/{{\rm{m}}^3}} \right)} $ 997 1600 2600
$ {C_p}\left( {{\rm{J}}/{\rm{kg}}\;{\rm{K}}} \right)$ 4179 796 425
$ {K\left( {{\rm{W}}/{\rm{mK}}} \right)}$ 0.613 6600
Pr 6.2 - -
[1]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

[2]

Jason R. Morris. A Sobolev space approach for global solutions to certain semi-linear heat equations in bounded domains. Conference Publications, 2009, 2009 (Special) : 574-582. doi: 10.3934/proc.2009.2009.574

[3]

Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289

[4]

Youcef Amirat, Kamel Hamdache. Weak solutions to stationary equations of heat transfer in a magnetic fluid. Communications on Pure & Applied Analysis, 2019, 18 (2) : 709-734. doi: 10.3934/cpaa.2019035

[5]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[6]

Ruifeng Zhang, Nan Liu, Man An. Analytical solutions of Skyrme model. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2201-2211. doi: 10.3934/dcdss.2016092

[7]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 937-956. doi: 10.3934/dcdss.2020055

[8]

Atul Kumar, R. R. Yadav. Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity. Conference Publications, 2013, 2013 (special) : 457-466. doi: 10.3934/proc.2013.2013.457

[9]

Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148

[10]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[11]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 377-387. doi: 10.3934/dcdss.2020021

[12]

G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013

[13]

Gary Froyland, Simon Lloyd, Anthony Quas. A semi-invertible Oseledets Theorem with applications to transfer operator cocycles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3835-3860. doi: 10.3934/dcds.2013.33.3835

[14]

Poonam Savsani, Mohamed A. Tawhid. Discrete heat transfer search for solving travelling salesman problem. Mathematical Foundations of Computing, 2018, 1 (3) : 265-280. doi: 10.3934/mfc.2018012

[15]

Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325

[16]

Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1

[17]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[18]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[19]

Fausto Ferrari, Michele Miranda Jr, Diego Pallara, Andrea Pinamonti, Yannick Sire. Fractional Laplacians, perimeters and heat semigroups in Carnot groups. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 477-491. doi: 10.3934/dcdss.2018026

[20]

Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019027

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]