# American Institute of Mathematical Sciences

• Previous Article
Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions
• DCDS-S Home
• This Issue
• Next Article
Memorized relaxation with singular and non-singular memory kernels for basic relaxation of dielectric vis-à-vis Curie-von Schweidler & Kohlrausch relaxation laws

## A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel

 1 Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca Morelos, México 2 CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca Morelos, México

* Corresponding author: J. F. Gómez-Aguilar

Received  April 2018 Revised  May 2018 Published  March 2019

Fund Project: The first author is supported by by CONACyT through the assignment doctoral fellowship

In this work we present a numerical method based on the Adams-Bashforth-Moulton scheme to solve numerically fractional delay differential equations. We focus in the fractional derivative with Mittag-Leffler kernel of type Liouville-Caputo with variable-order and the Liouville-Caputo fractional derivative with variable-order. Numerical examples are presented to show the applicability and efficiency of this novel method.

Citation: Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020031
##### References:

show all references

##### References:
Numerical solution of Eq. (26); using ABC derivative, in (a) we show the evolution of $y(t)$ when $\alpha = 1$, in (b) we obtain the phase diagram when $\alpha = 1$. Using Liouville-Caputo derivative, in (c) we show the evolution of $y(t)$ when $\alpha = 1$ and in (d) we obtain the phase diagram when $\alpha = 1$
Numerical solution of Eq. (26); using ABC derivative, in (a) we show the evolution of $y(t)$ when $\alpha = 0.85$, in (b) we obtain the phase diagram when $\alpha = 0.85$. Using Liouville-Caputo derivative, in (c) we show the evolution of $y(t)$ when $\alpha = 0.85$ and in (d) we obtain the phase diagram when $\alpha = 0.85$
Numerical solution of Eq. (27). In (a)-(c)-(e) we show the evolution of $y(t)$ using ABC derivative. In (b)-(d)-(f) we show the evolution of $y(t)$ using Liouville-Caputo derivative
Numerical solution of Eq. (27). In (a)-(c)-(e) we show the phase diagram $y(t)$ vs. $y(t-2)$ using ABC derivative. In (b)-(d)-(f) we show phase diagram $y(t)$ vs. $y(t-2)$ using Liouville-Caputo derivative
Numerical solution of Eq. (28); using ABC derivative, in (a)-(c) we show the evolution of $y(t)$ and the phase diagram $y(t)$ vs. $y(t-2)$, when $\alpha(t) = \dfrac{1-\cos(2t)}{3}$, respectively; using Liouville-Caputo derivative, in (b)-(d) we show the evolution of $y(t)$ and the phase diagram $y(t)$ vs. $y(t-2)$, when $\alpha(t) = \dfrac{1-\cos(2t)}{3}$, respectively
Numerical solution of Eq. (29); using ABC derivative, in (a)-(c) we show the evolution of $y(t)$ and the phase diagram $y(t)$ vs. $y(t-2)$, when $\alpha(t) = \dfrac{1-\cos(2t)}{3}$, respectively; using Liouville-Caputo derivative, in (b)-(d) we show the evolution of $y(t)$ and the phase diagram $y(t)$ vs. $y(t-2)$, when $\alpha(t) = \dfrac{1-\cos(2t)}{3}$, respectively
 [1] Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 867-880. doi: 10.3934/dcdss.2020050 [2] Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 995-1006. doi: 10.3934/dcdss.2020058 [3] Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 609-627. doi: 10.3934/dcdss.2020033 [4] Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 519-537. doi: 10.3934/dcdss.2020029 [5] Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272 [6] Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065 [7] Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267 [8] Berat Karaagac. New exact solutions for some fractional order differential equations via improved sub-equation method. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 447-454. doi: 10.3934/dcdss.2019029 [9] Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312 [10] Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090 [11] Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141 [12] Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233 [13] Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188 [14] Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289 [15] Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060 [16] C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002 [17] Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 [18] Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 [19] Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 723-739. doi: 10.3934/dcdss.2020040 [20] Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

2018 Impact Factor: 0.545

## Tools

Article outline

Figures and Tables