• Previous Article
    Existence of traveling wave solutions to parabolic-elliptic-elliptic chemotaxis systems with logistic source
  • DCDS-S Home
  • This Issue
  • Next Article
    Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system
doi: 10.3934/dcdss.2020018

On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion

1. 

School of Sciences, Southwest Petroleum University, Chengdu 610500, China

2. 

College of Electrical & Information Engineering, Shaanxi University of Science & Technology, Xian 710021, China

* Corresponding author: Yilong Wang

Received  April 2017 Revised  November 2017 Published  January 2019

Fund Project: The first author is supported by Young scholars development fund of SWPU grant 200631010065, Science and Technology Innovation Team of Education Department of Sichuan for Dynamical System and its Applications grant 18TD0013, Youth Science and Technology Innovation Team of Southwest Petroleum University for Nonlinear Systems grant 2017CXTD02 and the NNSF of China grant 11701461. The second author is supported by 2016 Google Nurturing Project for Young Researchers in West China

This paper considers the following parabolic-elliptic chemotaxis-growth system with nonlinear diffusion
$\left\{ \begin{array}{l}{u_t} = \nabla (D(u)\nabla u) - \nabla (\chi {u^q}\nabla v) + \mu u(1 - {u^\alpha }),\;\;\;\;\;\;\;\;& x \in \Omega ,{\mkern 1mu} {\mkern 1mu} t > 0,\\0 = \Delta v - v + {u^\gamma },\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&x \in \Omega ,{\mkern 1mu} {\mkern 1mu} t > 0\end{array} \right.$
under homogeneous Neumann boundary conditions for some constants
$q≥ 1$
,
$α>0$
and
$γ≥ 1$
, where
$D(u)≥ c_D u^{m-1}$
$(m≥ 1)$
for all
$u>0$
and
$D(u)>0$
for all
$u≥ 0$
, and
$Ω\subset\mathbb{R}^N$
$(N≥ 1)$
is a bounded domain with smooth boundary. It is shown that when
$ m>q+γ-\frac{2}{N}, \, \, \mathbf{or}$
$ α>q+γ-1, \, \, \mathbf{or}$
$α = q+γ-1\, \, {\rm{and}}\, \, μ>μ^*$
, where
$ {\mu ^*} = \left\{ \begin{array}{l}\begin{array}{*{20}{l}}{\frac{{(\alpha + 1 - m)N - 2}}{{(\alpha + 1 - m)N + 2(\alpha - \gamma )}}\chi ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}~~{\mkern 1mu} {\mkern 1mu} m \le q + \gamma - \frac{2}{N},}\end{array}\\0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}~~{\mkern 1mu} {\mkern 1mu} m > q + \gamma - \frac{2}{N},\end{array} \right.$
then the above system possesses a global bounded classical solution for any sufficiently smooth initial data. The results improve the results by Wang et al. (J. Differential Equations 256 (2014)) and generalize the results of Zheng (J. Differential Equations 259 (2015)) and Galakhov et al. (J. Differential Equations 261 (2016)).
Citation: Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020018
References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of KellerSegel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X.

[2]

E. GalakhovO. Salieva and J. I. Tello, On a Parabolic-Elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647. doi: 10.1016/j.jde.2016.07.008.

[3]

J. Gao, P. Zhu and A. Alsaedi, et al., A new switching control for finite-time synchronization of memristor-based recurrent neural networks, Neural Networks, 86 (2017), 1–9. doi: 10.1016/j.neunet.2016.10.008.

[4]

T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[5]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber. Deutsch. Math.-Verien, 105 (2003), 103-165.

[6]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Deutsch. Math.-Verien, 106 (2004), 51-69.

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.

[8]

B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7. doi: 10.1016/j.aml.2016.08.003.

[9]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolicparabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028.

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[11]

X. Li and Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165-198. doi: 10.1093/imamat/hxv033.

[12]

X. Li and Z. Xiang, Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source, Discrete Continuous Dynam. Systems - A, 35 (2015), 3503-3531. doi: 10.3934/dcds.2015.35.3503.

[13]

E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic- parabolic system for chemotaxis with subquadratic degradation, Discrete Continuous Dynam. Systems - B, 18 (2013), 2627-2646. doi: 10.3934/dcdsb.2013.18.2627.

[14]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Canad. Appl. Math. Quart., 10 (2002), 501-543.

[15]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[16]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003.

[17]

L. C. WangY. H. Li and C. L. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Continuous Dynam. Systems - A, 34 (2014), 789-802. doi: 10.3934/dcds.2014.34.789.

[18]

L. C. WangC. L. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007.

[19]

Y. Wang, A quasilinear attraction–repulsion chemotaxis system of parabolic–elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292. doi: 10.1016/j.jmaa.2016.03.061.

[20]

Y. Wang, Global existence and boundedness in a quasilinear attraction–repulsion chemotaxis system of parabolic-elliptic type, Bound. Value Probl., 2016 (2016), 1-22. doi: 10.1186/s13661-016-0518-6.

[21]

Y. Wang and Z. Xiang, Boundedness in a quasilinear 2D parabolic-parabolic attractionrepulsion chemotaxis system, Discrete Continuous Dynam. Systems - B, 21 (2016), 1953-1973. doi: 10.3934/dcdsb.2016031.

[22]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426.

[23]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal.-Theor.Methods Appl., 72 (2010), 1044-1064. doi: 10.1016/j.na.2009.07.045.

[24]

X. Wu, X. Ding, T. Lu and J. Wang, Topological dynamics of Zadeh's extension on upper semi-continuous fuzzy sets, Int. J. Bifurcation and Chaos, 27 (2017), 1750165, 13pp. doi: 10.1142/S0218127417501656.

[25]

X. Wu, X. Ma, Z. Zhu and T. Lu, Topological ergodic shadowing and chaos on uniform spaces, Int. J. Bifurcation and Chaos, 28 (2018), 1850043, 9pp. doi: 10.1142/S0218127418500438.

[26]

C. YangX. CaoZ. Jiang and S. Zheng, Boundedness in a quasilinear fully parabolic KellerSegel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591. doi: 10.1016/j.jmaa.2015.04.093.

[27]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140. doi: 10.1016/j.jde.2015.02.003.

show all references

References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of KellerSegel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X.

[2]

E. GalakhovO. Salieva and J. I. Tello, On a Parabolic-Elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647. doi: 10.1016/j.jde.2016.07.008.

[3]

J. Gao, P. Zhu and A. Alsaedi, et al., A new switching control for finite-time synchronization of memristor-based recurrent neural networks, Neural Networks, 86 (2017), 1–9. doi: 10.1016/j.neunet.2016.10.008.

[4]

T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[5]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber. Deutsch. Math.-Verien, 105 (2003), 103-165.

[6]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Deutsch. Math.-Verien, 106 (2004), 51-69.

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.

[8]

B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7. doi: 10.1016/j.aml.2016.08.003.

[9]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolicparabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028.

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[11]

X. Li and Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165-198. doi: 10.1093/imamat/hxv033.

[12]

X. Li and Z. Xiang, Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source, Discrete Continuous Dynam. Systems - A, 35 (2015), 3503-3531. doi: 10.3934/dcds.2015.35.3503.

[13]

E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic- parabolic system for chemotaxis with subquadratic degradation, Discrete Continuous Dynam. Systems - B, 18 (2013), 2627-2646. doi: 10.3934/dcdsb.2013.18.2627.

[14]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Canad. Appl. Math. Quart., 10 (2002), 501-543.

[15]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[16]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003.

[17]

L. C. WangY. H. Li and C. L. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Continuous Dynam. Systems - A, 34 (2014), 789-802. doi: 10.3934/dcds.2014.34.789.

[18]

L. C. WangC. L. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007.

[19]

Y. Wang, A quasilinear attraction–repulsion chemotaxis system of parabolic–elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292. doi: 10.1016/j.jmaa.2016.03.061.

[20]

Y. Wang, Global existence and boundedness in a quasilinear attraction–repulsion chemotaxis system of parabolic-elliptic type, Bound. Value Probl., 2016 (2016), 1-22. doi: 10.1186/s13661-016-0518-6.

[21]

Y. Wang and Z. Xiang, Boundedness in a quasilinear 2D parabolic-parabolic attractionrepulsion chemotaxis system, Discrete Continuous Dynam. Systems - B, 21 (2016), 1953-1973. doi: 10.3934/dcdsb.2016031.

[22]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426.

[23]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal.-Theor.Methods Appl., 72 (2010), 1044-1064. doi: 10.1016/j.na.2009.07.045.

[24]

X. Wu, X. Ding, T. Lu and J. Wang, Topological dynamics of Zadeh's extension on upper semi-continuous fuzzy sets, Int. J. Bifurcation and Chaos, 27 (2017), 1750165, 13pp. doi: 10.1142/S0218127417501656.

[25]

X. Wu, X. Ma, Z. Zhu and T. Lu, Topological ergodic shadowing and chaos on uniform spaces, Int. J. Bifurcation and Chaos, 28 (2018), 1850043, 9pp. doi: 10.1142/S0218127418500438.

[26]

C. YangX. CaoZ. Jiang and S. Zheng, Boundedness in a quasilinear fully parabolic KellerSegel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591. doi: 10.1016/j.jmaa.2015.04.093.

[27]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140. doi: 10.1016/j.jde.2015.02.003.

[1]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[2]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 165-176. doi: 10.3934/dcdss.2020009

[3]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018324

[4]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

[5]

Yūki Naito, Takasi Senba. Oscillating solutions to a parabolic-elliptic system related to a chemotaxis model. Conference Publications, 2011, 2011 (Special) : 1111-1118. doi: 10.3934/proc.2011.2011.1111

[6]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[7]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[8]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2018328

[9]

Rachidi B. Salako, Wenxian Shen. Existence of traveling wave solutions to parabolic-elliptic-elliptic chemotaxis systems with logistic source. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 293-319. doi: 10.3934/dcdss.2020017

[10]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[11]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[12]

Giuseppe Maria Coclite, Helge Holden, Kenneth H. Karlsen. Wellposedness for a parabolic-elliptic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 659-682. doi: 10.3934/dcds.2005.13.659

[13]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[14]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018295

[15]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 119-137. doi: 10.3934/dcdss.2020007

[16]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[17]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[18]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[19]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[20]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (27)
  • HTML views (182)
  • Cited by (0)

Other articles
by authors

[Back to Top]