• Previous Article
    Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system
  • DCDS-S Home
  • This Issue
  • Next Article
    Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity
doi: 10.3934/dcdss.2020014

Decay in chemotaxis systems with a logistic term

Università di Cagliari, Dipartimento di Matematica e Informatica, Viale Merello 92, 09123 Cagliari, Italy

* Corresponding author: Monica Marras

Received  May 2017 Revised  May 2018 Published  January 2019

This paper is concerned with a general fully parabolic Keller-Segel system, defined in a convex bounded and smooth domain $Ω$ of $\mathbb{R}^N, $ for N∈{2, 3}, with coefficients depending on the chemical concentration, perturbed by a logistic source and endowed with homogeneous Neumann boundary conditions. For each space dimension, once a suitable energy function in terms of the solution is defined, we impose proper assumptions on the data and an exponential decay of such energies is established.

Citation: Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Decay in chemotaxis systems with a logistic term. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020014
References:
[1]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel model of pattern formation in biological tissues, Math. Mod. Meth. Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X.

[2]

T. Cieàlak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Diff. Eq., 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045.

[3]

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1988.

[4]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.

[5]

R. Kaiser and L. X. Xu, Nonlinear stability of the rotating Bé énard problem, the case Pr=1, Nonlin. Dffer. Equ. Appl., 5 (1998), 283-307. doi: 10.1007/s000300050047.

[6]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[7]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.

[8]

M. Marras and S. Vernier-Piro, Blow up and decay bounds in quasilinear parabolic problems, Dynamical System and Diff. Equ.(DCDS), supplement (2007), 704-712.

[9]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems, Discrete and Continuous Dynamical Systems, 32 (2012), 4001-4014. doi: 10.3934/dcds.2012.32.4001.

[10]

M. MarrasS. Vernier-Piro and G. Viglialoro, Estimates from below of blow-up time in a parabolic system with gradient term, International Journal of Pure and Applied Mathematics, 93 (2014), 297-306.

[11]

M. MarrasS. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Mathematical Methods in the Applied Sciences, 39 (2016), 2787-2798. doi: 10.1002/mma.3728.

[12]

J. D. Murray, Mathematical Biology. I: An Introduction, Springer, New York, 2002.

[13]

J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Springer, New York, 2003.

[14]

L. E. Payne and B. Straughan, Decay for a Keller-Segel chemotaxis model, Studies in Applied Mathematics, 123 (2009), 337-360. doi: 10.1111/j.1467-9590.2009.00457.x.

[15]

Y. Tao and S. Vernier Piro, Explicit lower bound for blow-up time in a fully parabolic chemotaxis system with nonlinear cross-diffusion, Journal of Mathematical Analysis and Applications, 436 (2016), 16-28. doi: 10.1016/j.jmaa.2015.11.048.

[16]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[17]

G. Viglialoro, Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary conditions, Differential Integral Equations, 29 (2016), 359-376.

[18]

G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212. doi: 10.1016/j.jmaa.2016.02.069.

[19]

G. Viglialoro, Boundedness properties of very weak solutions to a fully parabolic chemotaxissystem with logistic source, Nonlinear Anal. Real World Appl., 34 (2017), 520-535. doi: 10.1016/j.nonrwa.2016.10.001.

[20]

G. Viglialoro and T. Woolley, Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3023-3045. doi: 10.3934/dcdsb.2017199.

[21]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Diff. Equ., 35 (2010), 1516-1537. doi: 10.1080/03605300903473426.

[22]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057.

[23]

M. Winkler, Finite-time blow-up in higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020.

show all references

References:
[1]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel model of pattern formation in biological tissues, Math. Mod. Meth. Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X.

[2]

T. Cieàlak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Diff. Eq., 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045.

[3]

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1988.

[4]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.

[5]

R. Kaiser and L. X. Xu, Nonlinear stability of the rotating Bé énard problem, the case Pr=1, Nonlin. Dffer. Equ. Appl., 5 (1998), 283-307. doi: 10.1007/s000300050047.

[6]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[7]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.

[8]

M. Marras and S. Vernier-Piro, Blow up and decay bounds in quasilinear parabolic problems, Dynamical System and Diff. Equ.(DCDS), supplement (2007), 704-712.

[9]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems, Discrete and Continuous Dynamical Systems, 32 (2012), 4001-4014. doi: 10.3934/dcds.2012.32.4001.

[10]

M. MarrasS. Vernier-Piro and G. Viglialoro, Estimates from below of blow-up time in a parabolic system with gradient term, International Journal of Pure and Applied Mathematics, 93 (2014), 297-306.

[11]

M. MarrasS. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Mathematical Methods in the Applied Sciences, 39 (2016), 2787-2798. doi: 10.1002/mma.3728.

[12]

J. D. Murray, Mathematical Biology. I: An Introduction, Springer, New York, 2002.

[13]

J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Springer, New York, 2003.

[14]

L. E. Payne and B. Straughan, Decay for a Keller-Segel chemotaxis model, Studies in Applied Mathematics, 123 (2009), 337-360. doi: 10.1111/j.1467-9590.2009.00457.x.

[15]

Y. Tao and S. Vernier Piro, Explicit lower bound for blow-up time in a fully parabolic chemotaxis system with nonlinear cross-diffusion, Journal of Mathematical Analysis and Applications, 436 (2016), 16-28. doi: 10.1016/j.jmaa.2015.11.048.

[16]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[17]

G. Viglialoro, Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary conditions, Differential Integral Equations, 29 (2016), 359-376.

[18]

G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212. doi: 10.1016/j.jmaa.2016.02.069.

[19]

G. Viglialoro, Boundedness properties of very weak solutions to a fully parabolic chemotaxissystem with logistic source, Nonlinear Anal. Real World Appl., 34 (2017), 520-535. doi: 10.1016/j.nonrwa.2016.10.001.

[20]

G. Viglialoro and T. Woolley, Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3023-3045. doi: 10.3934/dcdsb.2017199.

[21]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Diff. Equ., 35 (2010), 1516-1537. doi: 10.1080/03605300903473426.

[22]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057.

[23]

M. Winkler, Finite-time blow-up in higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020.

[1]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[2]

Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553

[3]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[4]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[5]

Igor Chueshov, Björn Schmalfuss. Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 315-338. doi: 10.3934/dcds.2007.18.315

[6]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[7]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[8]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[9]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[10]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[11]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

[12]

M. L. Bertotti, Sergey V. Bolotin. Chaotic trajectories for natural systems on a torus. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1343-1357. doi: 10.3934/dcds.2003.9.1343

[13]

F. R. Guarguaglini, R. Natalini. Global existence and uniqueness of solutions for multidimensional weakly parabolic systems arising in chemistry and biology. Communications on Pure & Applied Analysis, 2007, 6 (1) : 287-309. doi: 10.3934/cpaa.2007.6.287

[14]

Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463

[15]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[16]

Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237

[17]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[18]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[19]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[20]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

2017 Impact Factor: 0.561

Article outline

[Back to Top]