• Previous Article
    A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback
  • DCDS-S Home
  • This Issue
  • Next Article
    Generalised Lyapunov-Razumikhin techniques for scalar state-dependent delay differential equations
doi: 10.3934/dcdss.2020004

Existence of strictly decreasing positive solutions of linear differential equations of neutral type

CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic

* Corresponding author: Josef Diblík

Received  December 2016 Revised  April 2017 Published  January 2019

The paper is concerned with a linear neutral differential equation
$ \dot y(t) = -c(t)y(t-\tau(t))+d(t)\dot y(t-\delta(t)) $
where
$ c\colon [t_0,\infty)\to (0,\infty) $
,
$ d\colon [t_0,\infty)\to [0,\infty) $
,
$ t_0\in {\Bbb{R}} $
and
$ \tau, \delta \colon [t_0,\infty)\to (0,r] $
,
$ r\in{\mathbb{R}} $
,
$ r>0 $
are continuous functions. A new criterion is given for the existence of positive strictly decreasing solutions. The proof is based on the Rybakowski variant of a topological Ważewski principle suitable for differential equations of the delayed type. Unlike in the previous investigations known, this time the progress is achieved by using a special system of initial functions satisfying a so-called sewing condition. The result obtained is extended to more general equations. Comparisons with known results are given as well.
Citation: Josef Diblík, Zdeněk Svoboda. Existence of strictly decreasing positive solutions of linear differential equations of neutral type. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020004
References:
[1] R. P. AgarwalL. BerezanskiE. Braverman and A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012. doi: 10.1007/978-1-4614-3455-9.
[2]

R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker, Inc., 2004. doi: 10.1201/9780203025741.

[3]

D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, 1991.

[4]

J. Baštinec, J. Diblík and Z. Šmarda, An explicit criterion for the existence of positive solutions of the linear delayed equation $ \dot x(t) = -c(t)x(t-\tau(t) $, Abstr. Appl. Anal., 2011 (2011), Article ID 561902, 12 pages. doi: 10.1155/2011/561902.

[5]

J. Baštinec, L. Berezansky, J. Diblík and Z. Šmarda, On the critical case in oscillation for differential equations with a single delay and with several delays, Abstr. Appl. Anal., 2010 (2010), Article ID 417869, 20 pages. doi: 10.1155/2010/417869.

[6]

L. Berezanski and E. Braverman, On oscillation of a logistic equation with several delays, J. Comput. and Appl. Mathem., 113 (2000), 255-265. doi: 10.1016/S0377-0427(99)00260-5.

[7]

L. BerezanskiJ. Diblík and Z. Šmarda, Positive solutions of a second-order delay differential equations with a damping term, Comput. Math. Appl., 60 (2010), 1332-1342. doi: 10.1016/j.camwa.2010.06.014.

[8]

J. Čermák, A change of variables in the asymptotic theory of differential equations with unbounded delay, J. Comput. Appl. Mathem., 143 (2002), 81-93. doi: 10.1016/S0377-0427(01)00500-3.

[9]

J. Diblík, A criterion for existence of positive solutions of systems of retarded functional differential equations, Nonl. Anal., TMA, 38 (1999), 327-339. doi: 10.1016/S0362-546X(98)00199-0.

[10]

J. Diblík, Existence of solutions with asymptotic behavior of a certain type of some systems of delay functional-differential equations, (Russian) Sibirsk. Mat. Zh., 32 (1991), 55-60; translation in Siberian Math. J., 32 (1991), 222-226. doi: 10.1007/BF00972768.

[11]

J. Diblík, Positive and oscillating solutions of differential equations with delay in critical case, J. Comput. Appl. Mathem., 88 (1998), 185-202. doi: 10.1016/S0377-0427(97)00217-3.

[12]

J. Diblík and N. Koksch, Positive solutions of the equation $ \dot x(t) = -c(t)x(t-\tau) $ in the critical case, J. Math. Anal. Appl., 250 (2000), 635-659. doi: 10.1006/jmaa.2000.7008.

[13]

J. Diblík and M. Kúdelčíková, Existence and asymptotic behavior of positive solutions of functional differential equations of delayed type, Abstr. Appl. Anal., 2011 (2011), Article ID 754701, 16 pages. doi: 10.1155/2011/754701.

[14]

J. Diblík and M. Kúdelčíková, Two classes of asymptotically different positive solutions of the equation $ \dot y(t) = -f(t,y(t)) $, Nonlinear Anal., 70 (2009), 3702-3714. doi: 10.1016/j.na.2008.07.026.

[15]

J. Diblík and M. Kúdelčíková, Two classes of positive solutions of first order functional differential equations of delayed type, Nonlinear Anal., 75 (2012), 4807-4820. doi: 10.1016/j.na.2012.03.030.

[16]

J. Diblík and Z. Svoboda, An existence criterion of positive solutions of $p$-type retarded functional differential equations, J. Comput. Appl. Math., 147 (2002), 315-331. doi: 10.1016/S0377-0427(02)00439-9.

[17]

J. DiblíkZ. Svoboda and Z. Šmarda, Explicit criteria for the existence of positive solutions for a scalar differential equation with variable delay in the critical case, Comput. Math. Appl., 56 (2008), 556-564. doi: 10.1016/j.camwa.2008.01.015.

[18]

J. DiblíkZ. Svoboda and Z. Šmarda, Retract principle for neutral functional differential equations, Nonlinear Anal., 71 (2009), e1393-e1400. doi: 10.1016/j.na.2009.01.164.

[19]

Y. Domshlak and I. P. Stavroulakis, Oscillation of first-order delay differential equations in a critical state, Appl. Anal., 61 (1996), 359-371. doi: 10.1080/00036819608840464.

[20]

A. Domoshnitsky and M. Drakhlin, Nonoscillation of first order differential equations with delay, J. Math. Anal. Appl., 206 (1997), 254-269. doi: 10.1006/jmaa.1997.5231.

[21]

B. Dorociaková and R. Olach, Existence of positive solutions of delay differential equations, Tatra Mt. Math. Publ., 43 (2009), 63-70. doi: 10.2478/v10127-009-0025-6.

[22]

Á. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer. Math. Soc., 123 (1995), 1503-1510. doi: 10.1090/S0002-9939-1995-1242082-1.

[23] L. H. ErbeQ. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
[24] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992. doi: 10.1007/978-94-015-7920-9.
[25] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.
[26] J. K. Hale and Sjoerd M. Verdun Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7.
[27]

P. Hartman, Ordinary Differential Equations, Second Edition, SIAM, 2002. doi: 10.1137/1.9780898719222.

[28]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.

[29]

R. G. Koplatadze and T. A. Chanturia, Oscillating and monotone solutions of first-order differential equations with deviating argument, Differentsialnyje Uravnenija, 18 (1982), 1463-1465.

[30]

B. S. Razumikhin, A method of studying the stability of systems with an aftereffect, Sov. Math., Dokl., 7 (1966), 559-562, translation from Dokl. Akad. Nauk SSSR, 167 (1966), 1234-1237.

[31]

B. S. Razumikhin, Stability of Hereditary Systems, Nauka, 1988, (Russian, Ustoichivost ereditarnykh sistem).

[32]

B. S. Razumikhin, The application of Lyapunov’s method to problems in the stability of systems with delay, Autom. Remote Control, 21 (1960), 515-520, translation from Avtom. Telemekh., 21 (1960), 740-748.

[33]

K. P. Rybakowski, A topological principle for retarded functional differential equations of Carathéodory type, J. Diff. Equat., 39 (1981), 131-150. doi: 10.1016/0022-0396(81)90070-X.

[34]

K. P. Rybakowski, Ważewski's principle for retarded functional differential equations, J. Diff. Equat., 36 (1980), 117-138. doi: 10.1016/0022-0396(80)90080-7.

[35]

V. E. Sljusarchuk, The necessary and sufficient conditions for oscillation of solutions of nonlinear differential equations with pulse influence in the Banach space, Ukrain. Mat. Zh., 51 (1999), 98-109. doi: 10.1007/BF02591918.

[36]

R. Srzednicki, Ważewski Method and Conley Index, Handbook of Differential Equations, Ordinary Differential Equations, Edited by A. Cañada, P. Drábek and A. Fonda, Elsevier Inc., 1 (2004), 591-684.

[37]

I. P. Stavroulakis, Oscillation criteria for first order delay difference equations, Mediterr. J. Math., 1 (2004), 231-240. doi: 10.1007/s00009-004-0013-7.

[38]

T. Ważewski, Sur un principle topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles, Ann. Soc. Polon. Math., 20 (1947), 279-313.

[39]

D. Zhou, On a problem of I. Györi, J. Math. Anal. Appl., 183 (1994), 620-623. doi: 10.1006/jmaa.1994.1168.

show all references

References:
[1] R. P. AgarwalL. BerezanskiE. Braverman and A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012. doi: 10.1007/978-1-4614-3455-9.
[2]

R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker, Inc., 2004. doi: 10.1201/9780203025741.

[3]

D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, 1991.

[4]

J. Baštinec, J. Diblík and Z. Šmarda, An explicit criterion for the existence of positive solutions of the linear delayed equation $ \dot x(t) = -c(t)x(t-\tau(t) $, Abstr. Appl. Anal., 2011 (2011), Article ID 561902, 12 pages. doi: 10.1155/2011/561902.

[5]

J. Baštinec, L. Berezansky, J. Diblík and Z. Šmarda, On the critical case in oscillation for differential equations with a single delay and with several delays, Abstr. Appl. Anal., 2010 (2010), Article ID 417869, 20 pages. doi: 10.1155/2010/417869.

[6]

L. Berezanski and E. Braverman, On oscillation of a logistic equation with several delays, J. Comput. and Appl. Mathem., 113 (2000), 255-265. doi: 10.1016/S0377-0427(99)00260-5.

[7]

L. BerezanskiJ. Diblík and Z. Šmarda, Positive solutions of a second-order delay differential equations with a damping term, Comput. Math. Appl., 60 (2010), 1332-1342. doi: 10.1016/j.camwa.2010.06.014.

[8]

J. Čermák, A change of variables in the asymptotic theory of differential equations with unbounded delay, J. Comput. Appl. Mathem., 143 (2002), 81-93. doi: 10.1016/S0377-0427(01)00500-3.

[9]

J. Diblík, A criterion for existence of positive solutions of systems of retarded functional differential equations, Nonl. Anal., TMA, 38 (1999), 327-339. doi: 10.1016/S0362-546X(98)00199-0.

[10]

J. Diblík, Existence of solutions with asymptotic behavior of a certain type of some systems of delay functional-differential equations, (Russian) Sibirsk. Mat. Zh., 32 (1991), 55-60; translation in Siberian Math. J., 32 (1991), 222-226. doi: 10.1007/BF00972768.

[11]

J. Diblík, Positive and oscillating solutions of differential equations with delay in critical case, J. Comput. Appl. Mathem., 88 (1998), 185-202. doi: 10.1016/S0377-0427(97)00217-3.

[12]

J. Diblík and N. Koksch, Positive solutions of the equation $ \dot x(t) = -c(t)x(t-\tau) $ in the critical case, J. Math. Anal. Appl., 250 (2000), 635-659. doi: 10.1006/jmaa.2000.7008.

[13]

J. Diblík and M. Kúdelčíková, Existence and asymptotic behavior of positive solutions of functional differential equations of delayed type, Abstr. Appl. Anal., 2011 (2011), Article ID 754701, 16 pages. doi: 10.1155/2011/754701.

[14]

J. Diblík and M. Kúdelčíková, Two classes of asymptotically different positive solutions of the equation $ \dot y(t) = -f(t,y(t)) $, Nonlinear Anal., 70 (2009), 3702-3714. doi: 10.1016/j.na.2008.07.026.

[15]

J. Diblík and M. Kúdelčíková, Two classes of positive solutions of first order functional differential equations of delayed type, Nonlinear Anal., 75 (2012), 4807-4820. doi: 10.1016/j.na.2012.03.030.

[16]

J. Diblík and Z. Svoboda, An existence criterion of positive solutions of $p$-type retarded functional differential equations, J. Comput. Appl. Math., 147 (2002), 315-331. doi: 10.1016/S0377-0427(02)00439-9.

[17]

J. DiblíkZ. Svoboda and Z. Šmarda, Explicit criteria for the existence of positive solutions for a scalar differential equation with variable delay in the critical case, Comput. Math. Appl., 56 (2008), 556-564. doi: 10.1016/j.camwa.2008.01.015.

[18]

J. DiblíkZ. Svoboda and Z. Šmarda, Retract principle for neutral functional differential equations, Nonlinear Anal., 71 (2009), e1393-e1400. doi: 10.1016/j.na.2009.01.164.

[19]

Y. Domshlak and I. P. Stavroulakis, Oscillation of first-order delay differential equations in a critical state, Appl. Anal., 61 (1996), 359-371. doi: 10.1080/00036819608840464.

[20]

A. Domoshnitsky and M. Drakhlin, Nonoscillation of first order differential equations with delay, J. Math. Anal. Appl., 206 (1997), 254-269. doi: 10.1006/jmaa.1997.5231.

[21]

B. Dorociaková and R. Olach, Existence of positive solutions of delay differential equations, Tatra Mt. Math. Publ., 43 (2009), 63-70. doi: 10.2478/v10127-009-0025-6.

[22]

Á. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer. Math. Soc., 123 (1995), 1503-1510. doi: 10.1090/S0002-9939-1995-1242082-1.

[23] L. H. ErbeQ. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
[24] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992. doi: 10.1007/978-94-015-7920-9.
[25] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.
[26] J. K. Hale and Sjoerd M. Verdun Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7.
[27]

P. Hartman, Ordinary Differential Equations, Second Edition, SIAM, 2002. doi: 10.1137/1.9780898719222.

[28]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.

[29]

R. G. Koplatadze and T. A. Chanturia, Oscillating and monotone solutions of first-order differential equations with deviating argument, Differentsialnyje Uravnenija, 18 (1982), 1463-1465.

[30]

B. S. Razumikhin, A method of studying the stability of systems with an aftereffect, Sov. Math., Dokl., 7 (1966), 559-562, translation from Dokl. Akad. Nauk SSSR, 167 (1966), 1234-1237.

[31]

B. S. Razumikhin, Stability of Hereditary Systems, Nauka, 1988, (Russian, Ustoichivost ereditarnykh sistem).

[32]

B. S. Razumikhin, The application of Lyapunov’s method to problems in the stability of systems with delay, Autom. Remote Control, 21 (1960), 515-520, translation from Avtom. Telemekh., 21 (1960), 740-748.

[33]

K. P. Rybakowski, A topological principle for retarded functional differential equations of Carathéodory type, J. Diff. Equat., 39 (1981), 131-150. doi: 10.1016/0022-0396(81)90070-X.

[34]

K. P. Rybakowski, Ważewski's principle for retarded functional differential equations, J. Diff. Equat., 36 (1980), 117-138. doi: 10.1016/0022-0396(80)90080-7.

[35]

V. E. Sljusarchuk, The necessary and sufficient conditions for oscillation of solutions of nonlinear differential equations with pulse influence in the Banach space, Ukrain. Mat. Zh., 51 (1999), 98-109. doi: 10.1007/BF02591918.

[36]

R. Srzednicki, Ważewski Method and Conley Index, Handbook of Differential Equations, Ordinary Differential Equations, Edited by A. Cañada, P. Drábek and A. Fonda, Elsevier Inc., 1 (2004), 591-684.

[37]

I. P. Stavroulakis, Oscillation criteria for first order delay difference equations, Mediterr. J. Math., 1 (2004), 231-240. doi: 10.1007/s00009-004-0013-7.

[38]

T. Ważewski, Sur un principle topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles, Ann. Soc. Polon. Math., 20 (1947), 279-313.

[39]

D. Zhou, On a problem of I. Györi, J. Math. Anal. Appl., 183 (1994), 620-623. doi: 10.1006/jmaa.1994.1168.

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[3]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[4]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[5]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[6]

István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134

[7]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[8]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[9]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[10]

Hamid Reza Marzban, Hamid Reza Tabrizidooz. Solution of nonlinear delay optimal control problems using a composite pseudospectral collocation method. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1379-1389. doi: 10.3934/cpaa.2010.9.1379

[11]

Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675

[12]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[13]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 47-66. doi: 10.3934/dcdss.2020003

[14]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663

[15]

Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002

[16]

Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 31-46. doi: 10.3934/dcdss.2020002

[17]

Ewa Schmeidel, Robert Jankowski. Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2691-2696. doi: 10.3934/dcdsb.2014.19.2691

[18]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[19]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[20]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (12)
  • HTML views (73)
  • Cited by (0)

Other articles
by authors

[Back to Top]