doi: 10.3934/dcdss.2019143

Free probability on $ C^{*}$-algebras induced by hecke algebras over primes

1. 

St. Ambrose Univ., Dept. of Math. & Stat., 421 Ambrose Hall, 518 W. Locust St., Davenport, IA 52803, USA

2. 

Univ. of Iowa, Dept. of Math., 14 McLean Hall, Iowa City, IA 52242, USA

* Corresponding author: Ilwoo Cho

Received  August 2016 Revised  March 2017 Published  January 2019

In this paper, we establish free-probabilistic models $ \left( \mathcal{H}(G_{p}),\text{ }\psi _{p}\right)$ on Hecke algebras $ \mathcal{H}(G_{p})$, and construct Hilbert-space representations of $ \mathcal{H} (G_{p}),$ preserving free-probabilistic information from $ \left( \mathcal{H}(G_{p}),\text{ }\psi _{p}\right) ,$ for primes $ p.$ From such free-probabilistic structures with representations, we study spectral properties of operators in $ C^{*}$-algebras generated by $ \left\{ \mathcal{H}(G_{p})\right\}_{p:primes}$, via their free distributions.

Citation: Ilwoo Cho, Palle Jorgense. Free probability on $ C^{*}$-algebras induced by hecke algebras over primes. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019143
References:
[1]

K. Abu-GhanemD. AlpayF. Colombo and I. Sabadini, Gleason's problem and schur multipliers in the multivariable quaternionic setting, J. Math. Anal. Appl., 425 (2015), 1083-1096. doi: 10.1016/j.jmaa.2015.01.022.

[2]

D. AlpayF. Colombo and I. Sabadini, Inner product spaces and krein spaces in the quaternionic setting, recent adv. inverse scattering, schur anal. stochastic process, Opre. Theo., Adv. Appl., 224 (2015), 33-65. doi: 10.1007/978-3-319-10335-8_4.

[3]

D. AlpayP. E. T. Jorgensen and G. Salomon, On free stochastic processes and their derivatives, Stochast. Process. Appl., 124 (2014), 3392-3411. doi: 10.1016/j.spa.2014.05.007.

[4]

M. Aschbacher, Finite Group Theory, Second edition. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9781139175319.

[5]

J.-B. BostA. Connes and Hecke Algebras, Type Ⅲ-factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta. Math. New Series, 1 (1995), 411-457. doi: 10.1007/BF01589495.

[6]

D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511609572.

[7]

I. Cho, p-adic Banach-space operators and adelic Banach-space operators, Opuscula Math., 34 (2014), 29-65. doi: 10.7494/OpMath.2014.34.1.29.

[8]

I. Cho, Operators induced by prime numbers, Methods Appl. Math., 19 (2012), 313-339. doi: 10.4310/MAA.2012.v19.n4.a1.

[9]

I. Cho, Certain group dynamical systems induced by hecke algebras, Opuscula Math., 36 (2016), 337-373. doi: 10.7494/OpMath.2016.36.3.337.

[10]

I. Cho, Free probability on hecke algebras and certain group algebras induced by Hecke algebras, Opuscula Math., 36 (2016), 153-187. doi: 10.7494/OpMath.2016.36.2.153.

[11]

I. Cho, Free probability on $ W^{*}$-dynamical systems determined by general linear group $ GL_{2}(\Bbb{Q}_{p})$, Bollettino dell'Unione Math. Italiana, 10 (2017), 725-764. doi: 10.1007/s40574-016-0111-z.

[12]

I. Cho, Representations and corresponding operators induced by Hecke algebras, Compl. Anal. Oper. Theo., 10 (2016), 437-477. doi: 10.1007/s11785-014-0418-7.

[13]

I. Cho and T. Gillespie, Free probability on the Hecke algebra, Compl. Anal. Oper. Theo., 9 (2015), 1491-1531. doi: 10.1007/s11785-014-0403-1.

[14]

I. Cho and P. E. T. Jorgensen, Krein-space operators induced by Dirichlet characters, Special Issues: Contemp. Math. Amer. Math. Soc., 603 (2013), 3-33. doi: 10.1090/conm/603/12046.

[15]

C. W. Curtis, Note on the structure constants of Hecke algebras of induced representations of finite Chevalley groups, Pacific J. Math., 279 (2015), 181-202. doi: 10.2140/pjm.2015.279.181.

[16]

T. Gillespie, Superposition of Zeroes of Automorphic L-Functions and Functoriality, Univ. of Iowa, 2010, PhD Thesis.

[17]

T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math., 54 (2011), 35-46. doi: 10.1007/s11425-010-4137-x.

[18]

D. Hilbert, Mathematical problems, Bull. Ame. Math. Soc., 8 (1902), 437-479. doi: 10.1090/S0002-9904-1902-00923-3.

[19]

G. Johnson, A note on the double affine Hecke algebra of type $ GL_{2}$, Comm. Alg., 44 (2016), 1018-1032. doi: 10.1080/00927872.2014.999924.

[20]

F. Radulescu, Random matrices, amalgamated free products and subfactors of the $ C^{*}$-algebra of a free group of nonsingular index, Invent. Math., 115 (1994), 347-389.

[21]

R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998), x+88 pp. doi: 10.1090/memo/0627.

[22]

V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, P-adic analysis and mathematical physics, Ser. Soviet & East European Math., 1 (1994), xx+319 pp. doi: 10.1142/1581.

[23]

D. Voiculescu, K. Dykemma and A. Nica, Free Random Variables, American Mathematical Society, Providence, RI, 1992.

[24]

C. Zhong, On the formal affine Hecke algebra, J. Inst. Math. Jussieu, 14 (2015), 837-855. doi: 10.1017/S1474748014000188.

show all references

References:
[1]

K. Abu-GhanemD. AlpayF. Colombo and I. Sabadini, Gleason's problem and schur multipliers in the multivariable quaternionic setting, J. Math. Anal. Appl., 425 (2015), 1083-1096. doi: 10.1016/j.jmaa.2015.01.022.

[2]

D. AlpayF. Colombo and I. Sabadini, Inner product spaces and krein spaces in the quaternionic setting, recent adv. inverse scattering, schur anal. stochastic process, Opre. Theo., Adv. Appl., 224 (2015), 33-65. doi: 10.1007/978-3-319-10335-8_4.

[3]

D. AlpayP. E. T. Jorgensen and G. Salomon, On free stochastic processes and their derivatives, Stochast. Process. Appl., 124 (2014), 3392-3411. doi: 10.1016/j.spa.2014.05.007.

[4]

M. Aschbacher, Finite Group Theory, Second edition. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9781139175319.

[5]

J.-B. BostA. Connes and Hecke Algebras, Type Ⅲ-factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta. Math. New Series, 1 (1995), 411-457. doi: 10.1007/BF01589495.

[6]

D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511609572.

[7]

I. Cho, p-adic Banach-space operators and adelic Banach-space operators, Opuscula Math., 34 (2014), 29-65. doi: 10.7494/OpMath.2014.34.1.29.

[8]

I. Cho, Operators induced by prime numbers, Methods Appl. Math., 19 (2012), 313-339. doi: 10.4310/MAA.2012.v19.n4.a1.

[9]

I. Cho, Certain group dynamical systems induced by hecke algebras, Opuscula Math., 36 (2016), 337-373. doi: 10.7494/OpMath.2016.36.3.337.

[10]

I. Cho, Free probability on hecke algebras and certain group algebras induced by Hecke algebras, Opuscula Math., 36 (2016), 153-187. doi: 10.7494/OpMath.2016.36.2.153.

[11]

I. Cho, Free probability on $ W^{*}$-dynamical systems determined by general linear group $ GL_{2}(\Bbb{Q}_{p})$, Bollettino dell'Unione Math. Italiana, 10 (2017), 725-764. doi: 10.1007/s40574-016-0111-z.

[12]

I. Cho, Representations and corresponding operators induced by Hecke algebras, Compl. Anal. Oper. Theo., 10 (2016), 437-477. doi: 10.1007/s11785-014-0418-7.

[13]

I. Cho and T. Gillespie, Free probability on the Hecke algebra, Compl. Anal. Oper. Theo., 9 (2015), 1491-1531. doi: 10.1007/s11785-014-0403-1.

[14]

I. Cho and P. E. T. Jorgensen, Krein-space operators induced by Dirichlet characters, Special Issues: Contemp. Math. Amer. Math. Soc., 603 (2013), 3-33. doi: 10.1090/conm/603/12046.

[15]

C. W. Curtis, Note on the structure constants of Hecke algebras of induced representations of finite Chevalley groups, Pacific J. Math., 279 (2015), 181-202. doi: 10.2140/pjm.2015.279.181.

[16]

T. Gillespie, Superposition of Zeroes of Automorphic L-Functions and Functoriality, Univ. of Iowa, 2010, PhD Thesis.

[17]

T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math., 54 (2011), 35-46. doi: 10.1007/s11425-010-4137-x.

[18]

D. Hilbert, Mathematical problems, Bull. Ame. Math. Soc., 8 (1902), 437-479. doi: 10.1090/S0002-9904-1902-00923-3.

[19]

G. Johnson, A note on the double affine Hecke algebra of type $ GL_{2}$, Comm. Alg., 44 (2016), 1018-1032. doi: 10.1080/00927872.2014.999924.

[20]

F. Radulescu, Random matrices, amalgamated free products and subfactors of the $ C^{*}$-algebra of a free group of nonsingular index, Invent. Math., 115 (1994), 347-389.

[21]

R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998), x+88 pp. doi: 10.1090/memo/0627.

[22]

V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, P-adic analysis and mathematical physics, Ser. Soviet & East European Math., 1 (1994), xx+319 pp. doi: 10.1142/1581.

[23]

D. Voiculescu, K. Dykemma and A. Nica, Free Random Variables, American Mathematical Society, Providence, RI, 1992.

[24]

C. Zhong, On the formal affine Hecke algebra, J. Inst. Math. Jussieu, 14 (2015), 837-855. doi: 10.1017/S1474748014000188.

[1]

G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10.

[2]

Catarina Carvalho, Victor Nistor, Yu Qiao. Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras. Electronic Research Announcements, 2017, 24: 68-77. doi: 10.3934/era.2017.24.008

[3]

Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497

[4]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[5]

King-Yeung Lam, Daniel Munther. Invading the ideal free distribution. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3219-3244. doi: 10.3934/dcdsb.2014.19.3219

[6]

Adina Juratoni, Flavius Pater, Olivia Bundău. Operator representations of logmodular algebras which admit $\gamma-$spectral $\rho-$dilations. Electronic Research Announcements, 2012, 19: 49-57. doi: 10.3934/era.2012.19.49

[7]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[8]

Bruce Geist and Joyce R. McLaughlin. Eigenvalue formulas for the uniform Timoshenko beam: the free-free problem. Electronic Research Announcements, 1998, 4: 12-17.

[9]

Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347

[10]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[11]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[12]

Bum Ja Jin, Mariarosaria Padula. In a horizontal layer with free upper surface. Communications on Pure & Applied Analysis, 2002, 1 (3) : 379-415. doi: 10.3934/cpaa.2002.1.379

[13]

John Murrough Golden. Constructing free energies for materials with memory. Evolution Equations & Control Theory, 2014, 3 (3) : 447-483. doi: 10.3934/eect.2014.3.447

[14]

Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17

[15]

Benoît Jubin, Norbert Poncin, Kyosuke Uchino. Free Courant and derived Leibniz pseudoalgebras. Journal of Geometric Mechanics, 2016, 8 (1) : 71-97. doi: 10.3934/jgm.2016.8.71

[16]

Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013

[17]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[18]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[19]

Xinfu Chen, Huibin Cheng. Regularity of the free boundary for the American put option. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1751-1759. doi: 10.3934/dcdsb.2012.17.1751

[20]

Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (28)
  • Cited by (0)

Other articles
by authors

[Back to Top]