doi: 10.3934/dcdss.2019119

The work of Norman Dancer

School of Science and Technology, University of New England, Armidale, NSW 2351, Australia

Prof. Norman Dancer's help during the preparation of this article is gratefully acknowledged. The author also thanks the editors for advices leading to an improved version of this article

Received  June 2018 Revised  July 2018 Published  December 2018

In this article, a sample of Norman Dancer's published works are briefly described, to give the reader a taste of his deep and important research on nonlinear functional analysis, nonlinear ODE and PDE problems, and dynamical systems. The sample covers a variety of topics where Norman Dancer has made remarkable contributions.

The author takes this opportunity to express his deep admiration of the work of Professor Norman Dancer, and to thank him for the kind help to the development of the author's career, which has been greatly influenced by him and his work. 

Citation: Yihong Du. The work of Norman Dancer. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019119
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709. doi: 10.1137/1018114.

[2]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl.(4), 93 (1972), 231-246. doi: 10.1007/BF02412022.

[3]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi, J. Am. Math. Soc., 13 (2000), 725-739. doi: 10.1090/S0894-0347-00-00345-3.

[4]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294. doi: 10.1002/cpa.3160410302.

[5]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, Springfield, MO, 2006.

[6]

K. Borsuk, Drei Sätze über die $n$-dimensionale Sphäre, Fund. Math., 20 (1933), 236-243.

[7]

B. BuffoniE. N. Dancer and J. F. Toland, The regularity and local bifurcation of steady periodic water waves, Arch. Ration. Mech. Anal., 152 (2000), 207-240. doi: 10.1007/s002050000086.

[8]

B. BuffoniE. N. Dancer and J. F. Toland, The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal., 152 (2000), 241-271. doi: 10.1007/s002050000087.

[9]

D. Clark, A variant of the Lyusternik-Schnirelmann theory, Indiana Univ. Math. J., 22 (1973), 65-74. doi: 10.1512/iumj.1973.22.22008.

[10]

C. Conley, Isolated Invariant Sets and The Morse Index, CBMS regional conference series in mathematics No. 38., Providence: Amer. Math. Soc., 1978.

[11]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560. doi: 10.1016/j.aim.2004.08.006.

[12]

E. C. M. Crooks, E. N. Dancer and D. Hilhorst, On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions, Topol. Methods Nonlinear Anal., 30 (2007), 1-36.

[13]

M. CuestaD. de Figueiredo and J.-P. Gossez, The beginning of the Fucik Spectrum for the p-Laplacian, J. Differ. Equ., 159 (1999), 212-238. doi: 10.1006/jdeq.1999.3645.

[14]

E. N. Dancer, Bifurcation theory in real Banach space, Proc. London Math. Soc., (3) 23 (1971), 699-734. doi: 10.1112/plms/s3-23.4.699.

[15]

E. N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., (3) 26 (1973), 359-384. doi: 10.1112/plms/s3-26.2.359.

[16]

E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. London Math. Soc., (3) 27 (1973), 747-765. doi: 10.1112/plms/s3-27.4.747.

[17]

E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1977), 283-300. doi: 10.1017/S0308210500019648.

[18]

E. N. Dancer, On the existence of solutions of certain asymptotically homogeneous problems, Math. Z., 177 (1981), 33-48. doi: 10.1007/BF01214337.

[19]

E. N. Dancer, Symmetries, degree, homotopy indices and asymptotically homogeneous problems, Nonlinear Anal., 6 (1982), 667-686. doi: 10.1016/0362-546X(82)90037-2.

[20]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151. doi: 10.1016/0022-247X(83)90098-7.

[21]

E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743. doi: 10.1090/S0002-9947-1984-0743741-4.

[22]

E. N. Dancer, On positive solutions of some pairs of differential equations, II, J. Differential Equations, 60 (1985), 236-258. doi: 10.1016/0022-0396(85)90115-9.

[23]

E. N. Dancer, A new degree for $S^1$-invariant gradient mappings and applications, Ann. Inst. H. Poincare Anal. Non Linaire, 2 (1985), 329-370. doi: 10.1016/S0294-1449(16)30396-1.

[24]

E. N. Dancer, Counterexamples to some conjectures on the number of solutions of nonlinear equations, Math. Ann., 272 (1985), 421-440. doi: 10.1007/BF01455568.

[25]

E. N. Dancer, Multiple fixed points of positive mappings, J. Reine Angew. Math., 371 (1986), 46-66. doi: 10.1515/crll.1986.371.46.

[26]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156. doi: 10.1016/0022-0396(88)90021-6.

[27]

E. N. Dancer, On the influence of domain shape on the existence of large solutions of some superlinear problems, Math. Ann., 285 (1989), 647-669. doi: 10.1007/BF01452052.

[28]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, Ⅱ, J. Differential Equations, 87 (1990), 316-339. doi: 10.1016/0022-0396(90)90005-A.

[29]

E. N. Dancer and J. F. Toland, Degree theory for orbits of prescribed period of flows with the first integral, Proc. London Math. Soc., 60 (1990), 549-580. doi: 10.1112/plms/s3-60.3.549.

[30]

E. N. Dancer and P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. Math., 419 (1991), 125-139.

[31]

E. N. Dancer, Generic domain dependence for nonsmooth equations and the open set problem for jumping nonlinearities, Topol. Methods Nonlinear Anal., 1 (1993), 139-150. doi: 10.12775/TMNA.1993.011.

[32]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475. doi: 10.1006/jdeq.1994.1156.

[33]

E. N. Dancer and Y. Du, Existence of changing sign solutions for some semilinear problems with jumping nonlinearities at zero, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 1165-1176. doi: 10.1017/S0308210500030171.

[34]

E. N. Dancer and P. Hess, Stable subharmonic solutions in periodic reaction-diffusion equations, J. Differential Equations, 108 (1994), 190-200. doi: 10.1006/jdeq.1994.1032.

[35]

E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion. Ⅰ, General existence results. Nonlinear Anal., 24 (1995), 337-357. doi: 10.1016/0362-546X(94)E0063-M.

[36]

E. N. Dancer, Domain variation for certain sets of solutions and applications, Top. Meth. Nonl. Anal., 7 (1996), 95-113. doi: 10.12775/TMNA.1996.004.

[37]

E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations, 138 (1997), 86-132. doi: 10.1006/jdeq.1997.3256.

[38]

E. N. DancerD. HilhorstM. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115. doi: 10.1017/S0956792598003660.

[39]

E. N. Dancer and K. Perera, Some remarks on the Fucik spectrum of the p-Laplacian and critical groups, J. Math. Anal. Appl., 254 (2001), 164-177. doi: 10.1006/jmaa.2000.7228.

[40]

E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, J. Differential Equations, 182 (2002), 470-489. doi: 10.1006/jdeq.2001.4102.

[41]

E. N. Dancer, Real analyticity and non-degeneracy, Math. Ann., 325 (2003), 369-392. doi: 10.1007/s00208-002-0352-2.

[42]

E. N. Dancer, Stable and finite Morse index solutions on $R^n$ or on bounded domains with small diffusion, Ⅱ, Indiana Univ. Math. J., 53 (2004), 97-108. doi: 10.1512/iumj.2004.53.2354.

[43]

E. N. Dancer, Stable and finite Morse index solutions on $R^n$ or on bounded domains with small diffusion, Trans. Amer. Math. Soc., 357 (2005), 1225-1243. doi: 10.1090/S0002-9947-04-03543-3.

[44]

E. N. DancerK. Geba and S. Rybicki, Classification of homotopy classes of equivariant gradient map, Fund. Math., 185 (2005), 1-18. doi: 10.4064/fm185-1-1.

[45]

E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, Ⅱ, Comm. Partial Differential Equations, 30 (2005), 1331-1358. doi: 10.1080/03605300500258865.

[46]

E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differential Equations, 210 (2005), 317-351. doi: 10.1016/j.jde.2004.07.017.

[47]

E. N. Dancer, Finite Morse index solutions of exponential problems, Ann. Inst. H. Poincare Anal. Non Linaire, 25 (2008), 173-179. doi: 10.1016/j.anihpc.2006.12.001.

[48]

E. N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., 620 (2008), 213-233. doi: 10.1515/CRELLE.2008.055.

[49]

E. N. Dancer and S. Yan, The Lazer-McKenna conjecture and a free boundary problem in two dimensions, J. Lond. Math. Soc., (2) 78 (2008), 639-662. doi: 10.1112/jlms/jdn045.

[50]

E. N. Dancer and A. Farina, On the classification of solutions of $u = e^u$ on $R^N$: stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338. doi: 10.1090/S0002-9939-08-09772-4.

[51]

E. N. DancerY. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310. doi: 10.1016/j.jde.2011.02.005.

[52]

E. N. DancerK. Wang and Z. Zhang, Uniform Holder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J. Differential Equations, 251 (2011), 2737-2769. doi: 10.1016/j.jde.2011.06.015.

[53]

E. N. DancerK. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131. doi: 10.1016/j.jfa.2012.10.009.

[54]

E. N. DancerK. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Tran. Amer. Math. Soc., 364 (2012), 961-1005. doi: 10.1090/S0002-9947-2011-05488-7.

[55]

E. N. Dancer, On the converse problem for the Gross-Pitaevskii equations with a large parameter, Discrete Contin. Dyn. Syst., 34 (2014), 2481-2493. doi: 10.3934/dcds.2014.34.2481.

[56]

E. N. Dancer, On a degree associated with the Gross-Pitaevskii system with a large parameter, Discrete Contin. Dyn. Syst. S, 2018, this issue.

[57]

D. Daners, Domain perturbation for linear and nonlinear parabolic equations, J. Differential Equations, 129 (1996), 358-402. doi: 10.1006/jdeq.1996.0122.

[58]

J. DávilaL. DupaigneK. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285. doi: 10.1016/j.aim.2014.02.034.

[59]

J. DávilaL. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc., 369 (2017), 6087-6104. doi: 10.1090/tran/6872.

[60]

D. de Figueiredo and J.-P. Gossez, On the first curve of the Fucik spectrum of an elliptic operator, Differ. Integral Equ., 7 (1994), 1285-1302.

[61]

M. del PinoM. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension $N\geq 9$, Ann. of Math., 174 (2011), 1485-1569. doi: 10.4007/annals.2011.174.3.3.

[62]

P. Drabek and S. B. Robinson, A new and extended variational characterization of the Fucik spectrum with application to nonresonance and resonance problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 1, 27 pp. doi: 10.1007/s00526-017-1276-8.

[63]

Y. Du, A degree-theoretic approach to N-species periodic competition systems on the whole $R^n$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 295-318. doi: 10.1017/S0308210500021363.

[64]

Y. Du, On Dancer's fixed point index formulas, Diff. Integral Eqns., 13 (2000), 145-158.

[65]

Y. DuZ. Guo and K. Wang, Monotonicity formula and $\epsilon$-regularity of stable solutions to supercritical problems and applications to finite Morse index solutions, Calc. Var. Partial Differential Equations, 50 (2014), 615-638. doi: 10.1007/s00526-013-0649-x.

[66]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb R^N$, J. Math. Pures Appl., (9) 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001.

[67]

F. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems, Math. Z., 228 (1998), 638-703. doi: 10.1007/PL00004636.

[68]

S. Fucik, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat., 101 (1976), 69-87.

[69]

T. Gallouet and O. Kavian, Résultats dexistence et de non-existence pour certains problemes demi-linéaires a l'infini, Ann. Fac. Sci. Toulouse Math., (5) 3 (1981), 201-246. doi: 10.5802/afst.568.

[70]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491. doi: 10.1007/s002080050196.

[71]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53. doi: 10.1515/crll.1988.383.1.

[72]

H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann., 261 (1982), 493-514. doi: 10.1007/BF01457453.

[73]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, 8. Walter de Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110200027.

[74]

A. Kushkuley and Z. Balanov, Geometric Methods for Degree Theory of Equivariant Maps, Lect. Notes in Math., 1632, Springer-Verlag, Berlin, 1996. doi: 10.1007/BFb0092822.

[75]

A. C. Lazer and P. J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A, 95 (1983), 275-283. doi: 10.1017/S0308210500012993.

[76]

C. Li and S. Li, The Fucik spectrum of Schrodinger operator and the existence of four solutions of Schrodinger equations with jumping nonlinearities, J. Differential Equations, 263 (2017), 7000-7097. doi: 10.1016/j.jde.2017.07.038.

[77]

G. LiS. Yan and J. Yang, The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, Part Ⅱ, J. Differential Equations, 227 (2006), 301-332. doi: 10.1016/j.jde.2006.02.011.

[78]

G. LiS. Yan and J. Yang, The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial Differential Equations, 28 (2007), 471-508. doi: 10.1007/s00526-006-0051-z.

[79]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645-673.

[80]

R. Molle and D. Passaseo, Infinitely many new curves of the Fucik spectrum, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1145-1171. doi: 10.1016/j.anihpc.2014.05.007.

[81]

B. NorisH. TavaresS. Terracini and G. Verzini, Uniform Hölder bounds for non-linear Schrödinger systems with strong competition, Commun. Pure Appl. Math., 63 (2010), 267-302. doi: 10.1002/cpa.20309.

[82]

R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., (4) 89 (1971), 217-258. doi: 10.1007/BF02414948.

[83]

K. PereraM. Squassina and Y. Yang, A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal., 4 (2015), 13-23. doi: 10.1515/anona-2014-0038.

[84]

P. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal., 25 (1977), 412-424. doi: 10.1016/0022-1236(77)90047-7.

[85]

O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., (2) 169 (2009), 41-78. doi: 10.4007/annals.2009.169.41.

[86]

M. Schechter, The Fucik spectrum, Indiana Univ. Math. J., 43 (1994), 1139-1157. doi: 10.1512/iumj.1994.43.43050.

[87]

H. L. Smith, Monotone Dynamical Systems, An introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.

[88]

N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697. doi: 10.1007/s00205-015-0867-9.

[89]

J. Wei and S. Yan, The Lazer-McKenna conjecture: the critical case, J. Funct. Anal., 244 (2007), 639-667. doi: 10.1016/j.jfa.2006.11.002.

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709. doi: 10.1137/1018114.

[2]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl.(4), 93 (1972), 231-246. doi: 10.1007/BF02412022.

[3]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi, J. Am. Math. Soc., 13 (2000), 725-739. doi: 10.1090/S0894-0347-00-00345-3.

[4]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294. doi: 10.1002/cpa.3160410302.

[5]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, Springfield, MO, 2006.

[6]

K. Borsuk, Drei Sätze über die $n$-dimensionale Sphäre, Fund. Math., 20 (1933), 236-243.

[7]

B. BuffoniE. N. Dancer and J. F. Toland, The regularity and local bifurcation of steady periodic water waves, Arch. Ration. Mech. Anal., 152 (2000), 207-240. doi: 10.1007/s002050000086.

[8]

B. BuffoniE. N. Dancer and J. F. Toland, The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal., 152 (2000), 241-271. doi: 10.1007/s002050000087.

[9]

D. Clark, A variant of the Lyusternik-Schnirelmann theory, Indiana Univ. Math. J., 22 (1973), 65-74. doi: 10.1512/iumj.1973.22.22008.

[10]

C. Conley, Isolated Invariant Sets and The Morse Index, CBMS regional conference series in mathematics No. 38., Providence: Amer. Math. Soc., 1978.

[11]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560. doi: 10.1016/j.aim.2004.08.006.

[12]

E. C. M. Crooks, E. N. Dancer and D. Hilhorst, On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions, Topol. Methods Nonlinear Anal., 30 (2007), 1-36.

[13]

M. CuestaD. de Figueiredo and J.-P. Gossez, The beginning of the Fucik Spectrum for the p-Laplacian, J. Differ. Equ., 159 (1999), 212-238. doi: 10.1006/jdeq.1999.3645.

[14]

E. N. Dancer, Bifurcation theory in real Banach space, Proc. London Math. Soc., (3) 23 (1971), 699-734. doi: 10.1112/plms/s3-23.4.699.

[15]

E. N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., (3) 26 (1973), 359-384. doi: 10.1112/plms/s3-26.2.359.

[16]

E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. London Math. Soc., (3) 27 (1973), 747-765. doi: 10.1112/plms/s3-27.4.747.

[17]

E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1977), 283-300. doi: 10.1017/S0308210500019648.

[18]

E. N. Dancer, On the existence of solutions of certain asymptotically homogeneous problems, Math. Z., 177 (1981), 33-48. doi: 10.1007/BF01214337.

[19]

E. N. Dancer, Symmetries, degree, homotopy indices and asymptotically homogeneous problems, Nonlinear Anal., 6 (1982), 667-686. doi: 10.1016/0362-546X(82)90037-2.

[20]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151. doi: 10.1016/0022-247X(83)90098-7.

[21]

E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743. doi: 10.1090/S0002-9947-1984-0743741-4.

[22]

E. N. Dancer, On positive solutions of some pairs of differential equations, II, J. Differential Equations, 60 (1985), 236-258. doi: 10.1016/0022-0396(85)90115-9.

[23]

E. N. Dancer, A new degree for $S^1$-invariant gradient mappings and applications, Ann. Inst. H. Poincare Anal. Non Linaire, 2 (1985), 329-370. doi: 10.1016/S0294-1449(16)30396-1.

[24]

E. N. Dancer, Counterexamples to some conjectures on the number of solutions of nonlinear equations, Math. Ann., 272 (1985), 421-440. doi: 10.1007/BF01455568.

[25]

E. N. Dancer, Multiple fixed points of positive mappings, J. Reine Angew. Math., 371 (1986), 46-66. doi: 10.1515/crll.1986.371.46.

[26]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156. doi: 10.1016/0022-0396(88)90021-6.

[27]

E. N. Dancer, On the influence of domain shape on the existence of large solutions of some superlinear problems, Math. Ann., 285 (1989), 647-669. doi: 10.1007/BF01452052.

[28]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, Ⅱ, J. Differential Equations, 87 (1990), 316-339. doi: 10.1016/0022-0396(90)90005-A.

[29]

E. N. Dancer and J. F. Toland, Degree theory for orbits of prescribed period of flows with the first integral, Proc. London Math. Soc., 60 (1990), 549-580. doi: 10.1112/plms/s3-60.3.549.

[30]

E. N. Dancer and P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. Math., 419 (1991), 125-139.

[31]

E. N. Dancer, Generic domain dependence for nonsmooth equations and the open set problem for jumping nonlinearities, Topol. Methods Nonlinear Anal., 1 (1993), 139-150. doi: 10.12775/TMNA.1993.011.

[32]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475. doi: 10.1006/jdeq.1994.1156.

[33]

E. N. Dancer and Y. Du, Existence of changing sign solutions for some semilinear problems with jumping nonlinearities at zero, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 1165-1176. doi: 10.1017/S0308210500030171.

[34]

E. N. Dancer and P. Hess, Stable subharmonic solutions in periodic reaction-diffusion equations, J. Differential Equations, 108 (1994), 190-200. doi: 10.1006/jdeq.1994.1032.

[35]

E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion. Ⅰ, General existence results. Nonlinear Anal., 24 (1995), 337-357. doi: 10.1016/0362-546X(94)E0063-M.

[36]

E. N. Dancer, Domain variation for certain sets of solutions and applications, Top. Meth. Nonl. Anal., 7 (1996), 95-113. doi: 10.12775/TMNA.1996.004.

[37]

E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations, 138 (1997), 86-132. doi: 10.1006/jdeq.1997.3256.

[38]

E. N. DancerD. HilhorstM. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115. doi: 10.1017/S0956792598003660.

[39]

E. N. Dancer and K. Perera, Some remarks on the Fucik spectrum of the p-Laplacian and critical groups, J. Math. Anal. Appl., 254 (2001), 164-177. doi: 10.1006/jmaa.2000.7228.

[40]

E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, J. Differential Equations, 182 (2002), 470-489. doi: 10.1006/jdeq.2001.4102.

[41]

E. N. Dancer, Real analyticity and non-degeneracy, Math. Ann., 325 (2003), 369-392. doi: 10.1007/s00208-002-0352-2.

[42]

E. N. Dancer, Stable and finite Morse index solutions on $R^n$ or on bounded domains with small diffusion, Ⅱ, Indiana Univ. Math. J., 53 (2004), 97-108. doi: 10.1512/iumj.2004.53.2354.

[43]

E. N. Dancer, Stable and finite Morse index solutions on $R^n$ or on bounded domains with small diffusion, Trans. Amer. Math. Soc., 357 (2005), 1225-1243. doi: 10.1090/S0002-9947-04-03543-3.

[44]

E. N. DancerK. Geba and S. Rybicki, Classification of homotopy classes of equivariant gradient map, Fund. Math., 185 (2005), 1-18. doi: 10.4064/fm185-1-1.

[45]

E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, Ⅱ, Comm. Partial Differential Equations, 30 (2005), 1331-1358. doi: 10.1080/03605300500258865.

[46]

E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differential Equations, 210 (2005), 317-351. doi: 10.1016/j.jde.2004.07.017.

[47]

E. N. Dancer, Finite Morse index solutions of exponential problems, Ann. Inst. H. Poincare Anal. Non Linaire, 25 (2008), 173-179. doi: 10.1016/j.anihpc.2006.12.001.

[48]

E. N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., 620 (2008), 213-233. doi: 10.1515/CRELLE.2008.055.

[49]

E. N. Dancer and S. Yan, The Lazer-McKenna conjecture and a free boundary problem in two dimensions, J. Lond. Math. Soc., (2) 78 (2008), 639-662. doi: 10.1112/jlms/jdn045.

[50]

E. N. Dancer and A. Farina, On the classification of solutions of $u = e^u$ on $R^N$: stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338. doi: 10.1090/S0002-9939-08-09772-4.

[51]

E. N. DancerY. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310. doi: 10.1016/j.jde.2011.02.005.

[52]

E. N. DancerK. Wang and Z. Zhang, Uniform Holder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J. Differential Equations, 251 (2011), 2737-2769. doi: 10.1016/j.jde.2011.06.015.

[53]

E. N. DancerK. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131. doi: 10.1016/j.jfa.2012.10.009.

[54]

E. N. DancerK. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Tran. Amer. Math. Soc., 364 (2012), 961-1005. doi: 10.1090/S0002-9947-2011-05488-7.

[55]

E. N. Dancer, On the converse problem for the Gross-Pitaevskii equations with a large parameter, Discrete Contin. Dyn. Syst., 34 (2014), 2481-2493. doi: 10.3934/dcds.2014.34.2481.

[56]

E. N. Dancer, On a degree associated with the Gross-Pitaevskii system with a large parameter, Discrete Contin. Dyn. Syst. S, 2018, this issue.

[57]

D. Daners, Domain perturbation for linear and nonlinear parabolic equations, J. Differential Equations, 129 (1996), 358-402. doi: 10.1006/jdeq.1996.0122.

[58]

J. DávilaL. DupaigneK. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285. doi: 10.1016/j.aim.2014.02.034.

[59]

J. DávilaL. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc., 369 (2017), 6087-6104. doi: 10.1090/tran/6872.

[60]

D. de Figueiredo and J.-P. Gossez, On the first curve of the Fucik spectrum of an elliptic operator, Differ. Integral Equ., 7 (1994), 1285-1302.

[61]

M. del PinoM. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension $N\geq 9$, Ann. of Math., 174 (2011), 1485-1569. doi: 10.4007/annals.2011.174.3.3.

[62]

P. Drabek and S. B. Robinson, A new and extended variational characterization of the Fucik spectrum with application to nonresonance and resonance problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 1, 27 pp. doi: 10.1007/s00526-017-1276-8.

[63]

Y. Du, A degree-theoretic approach to N-species periodic competition systems on the whole $R^n$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 295-318. doi: 10.1017/S0308210500021363.

[64]

Y. Du, On Dancer's fixed point index formulas, Diff. Integral Eqns., 13 (2000), 145-158.

[65]

Y. DuZ. Guo and K. Wang, Monotonicity formula and $\epsilon$-regularity of stable solutions to supercritical problems and applications to finite Morse index solutions, Calc. Var. Partial Differential Equations, 50 (2014), 615-638. doi: 10.1007/s00526-013-0649-x.

[66]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb R^N$, J. Math. Pures Appl., (9) 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001.

[67]

F. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems, Math. Z., 228 (1998), 638-703. doi: 10.1007/PL00004636.

[68]

S. Fucik, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat., 101 (1976), 69-87.

[69]

T. Gallouet and O. Kavian, Résultats dexistence et de non-existence pour certains problemes demi-linéaires a l'infini, Ann. Fac. Sci. Toulouse Math., (5) 3 (1981), 201-246. doi: 10.5802/afst.568.

[70]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491. doi: 10.1007/s002080050196.

[71]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53. doi: 10.1515/crll.1988.383.1.

[72]

H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann., 261 (1982), 493-514. doi: 10.1007/BF01457453.

[73]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, 8. Walter de Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110200027.

[74]

A. Kushkuley and Z. Balanov, Geometric Methods for Degree Theory of Equivariant Maps, Lect. Notes in Math., 1632, Springer-Verlag, Berlin, 1996. doi: 10.1007/BFb0092822.

[75]

A. C. Lazer and P. J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A, 95 (1983), 275-283. doi: 10.1017/S0308210500012993.

[76]

C. Li and S. Li, The Fucik spectrum of Schrodinger operator and the existence of four solutions of Schrodinger equations with jumping nonlinearities, J. Differential Equations, 263 (2017), 7000-7097. doi: 10.1016/j.jde.2017.07.038.

[77]

G. LiS. Yan and J. Yang, The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, Part Ⅱ, J. Differential Equations, 227 (2006), 301-332. doi: 10.1016/j.jde.2006.02.011.

[78]

G. LiS. Yan and J. Yang, The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial Differential Equations, 28 (2007), 471-508. doi: 10.1007/s00526-006-0051-z.

[79]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645-673.

[80]

R. Molle and D. Passaseo, Infinitely many new curves of the Fucik spectrum, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1145-1171. doi: 10.1016/j.anihpc.2014.05.007.

[81]

B. NorisH. TavaresS. Terracini and G. Verzini, Uniform Hölder bounds for non-linear Schrödinger systems with strong competition, Commun. Pure Appl. Math., 63 (2010), 267-302. doi: 10.1002/cpa.20309.

[82]

R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., (4) 89 (1971), 217-258. doi: 10.1007/BF02414948.

[83]

K. PereraM. Squassina and Y. Yang, A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal., 4 (2015), 13-23. doi: 10.1515/anona-2014-0038.

[84]

P. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal., 25 (1977), 412-424. doi: 10.1016/0022-1236(77)90047-7.

[85]

O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., (2) 169 (2009), 41-78. doi: 10.4007/annals.2009.169.41.

[86]

M. Schechter, The Fucik spectrum, Indiana Univ. Math. J., 43 (1994), 1139-1157. doi: 10.1512/iumj.1994.43.43050.

[87]

H. L. Smith, Monotone Dynamical Systems, An introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.

[88]

N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697. doi: 10.1007/s00205-015-0867-9.

[89]

J. Wei and S. Yan, The Lazer-McKenna conjecture: the critical case, J. Funct. Anal., 244 (2007), 639-667. doi: 10.1016/j.jfa.2006.11.002.

[1]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

[2]

Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809

[3]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[4]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[5]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[6]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[7]

Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure & Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119

[8]

Li Ma, Chong Li, Lin Zhao. Monotone solutions to a class of elliptic and diffusion equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 237-246. doi: 10.3934/cpaa.2007.6.237

[9]

Hal L. Smith. Monotone dynamical systems: Reflections on new advances & applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 485-504. doi: 10.3934/dcds.2017020

[10]

Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2018291

[11]

Michael E. Filippakis, Donal O'Regan, Nikolaos S. Papageorgiou. Positive solutions and bifurcation phenomena for nonlinear elliptic equations of logistic type: The superdiffusive case. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1507-1527. doi: 10.3934/cpaa.2010.9.1507

[12]

Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357

[13]

Jean Dolbeault, Robert Stańczy. Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi--Dirac statistics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 139-154. doi: 10.3934/dcds.2015.35.139

[14]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[15]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[16]

Tiphaine Jézéquel, Patrick Bernard, Eric Lombardi. Homoclinic orbits with many loops near a $0^2 i\omega$ resonant fixed point of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3153-3225. doi: 10.3934/dcds.2016.36.3153

[17]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[18]

Monica Lazzo, Paul G. Schmidt. Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 566-575. doi: 10.3934/proc.2005.2005.566

[19]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

[20]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (20)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]