doi: 10.3934/dcdss.2019117

Topological remarks and new examples of persistence of diversity in biological dynamics

1. 

Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005, Paris, France

2. 

Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 7598, Laboratoire Jacques-louis Lions, F-75005, Paris, France

Received  November 2017 Revised  January 2018 Published  November 2018

There are several definitions of persistence of species, which amount to define interactions between them ensuring the survival of all the species initially present in the system. The aim of this paper is to present a wide family of examples in dimension $n>2$ (very natural in biological dynamics) exhibiting convergence towards a cycle when starting from anywhere with the exception of a zero-measure set of "forbidden" initial positions. The forbidden set is a heteroclinic orbit linking two equilibria on the boundary of the domain. Moreover, such systems have no equilibrium point interior to the domain (which is necessary for classical persistence for topological reasons). Such systems do not enjoy persistence in a strict sense, whereas in practice they do. The forbidden initial set does not matter in practice, but it modifies drastically the topological properties.

Citation: Evariste Sanchez-Palencia, Jean-Pierre Françoise. Topological remarks and new examples of persistence of diversity in biological dynamics. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019117
References:
[1]

R. Arditi and J. Michalski, Nonlinear food web models and their response to increased basal productivity, in food webs; integration of patterns and dynamics, G.A. Polis and K.O. Winemiller eds. Chapman and Hall, New York, (1996), 122-133.

[2]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, London Math. Soc. Student Texts, 7, Cambridge University Press, 1988.

[3]

V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Mathematical Biosciences, 111 (1992), 1-71. doi: 10.1016/0025-5564(92)90078-B.

[4]

G. Kirlinger, Permanence of some ecological systems with several predators and one prey species, Jour Mathematical Biol, 26 (1988), 217-232. doi: 10.1007/BF00277734.

[5]

Ph. Lherminier and E. Sanchez-Palencia, Remarks and examples on transient processes and attractors in biological evolution, Elec. Jour. Diff. Equat. Conference, 22 (2015), 63-77.

[6]

C. Lobry, Modèles Déterministes en Dynamique des Populations, Ecole CIMPA Saint Louis du Sénégal, 2001.

[7]

K. S. McCann, The diversity - stability debate, Nature, 405 (2000), 228-230.

[8]

R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competetive exclusion, Jour Diff Equations, 23 (1977), 30-52. doi: 10.1016/0022-0396(77)90135-8.

[9]

J. Milnor, Topology from the Differential Viewpoint, The University Press of Virginia, Charlottesville, 1965.

[10] V. A. Pliss, Nonlocal Problems in the Theory of Oscillations, Academic Press, 1966.
[11]

A. RapaportD. Dochain and J. Harmand, Practical coexistence in the chemostat with arbitrarily close growth functions, Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, 9 (2008), 231-243.

[12]

E. Sanchez-Palencia and J.-P. Françoise, Structural stability and emergence of biodiversity, Acta Biotheoretica, 61 (2013), 397-412.

[13]

E. Sanchez-Palencia and J.-P. Françoise, Constrained evolution processes and emergence of organized diversity, Math Meth Applied Sci., 39 (2016), 104-133. doi: 10.1002/mma.3463.

[14]

S. J. Schreiber, Criteria for Cr robust permanence, Jour Diff Equations, 162 (2000), 400-426. doi: 10.1006/jdeq.1999.3719.

[15]

Hal. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, vol 111, Amer. Math. Soc., 2011.

show all references

References:
[1]

R. Arditi and J. Michalski, Nonlinear food web models and their response to increased basal productivity, in food webs; integration of patterns and dynamics, G.A. Polis and K.O. Winemiller eds. Chapman and Hall, New York, (1996), 122-133.

[2]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, London Math. Soc. Student Texts, 7, Cambridge University Press, 1988.

[3]

V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Mathematical Biosciences, 111 (1992), 1-71. doi: 10.1016/0025-5564(92)90078-B.

[4]

G. Kirlinger, Permanence of some ecological systems with several predators and one prey species, Jour Mathematical Biol, 26 (1988), 217-232. doi: 10.1007/BF00277734.

[5]

Ph. Lherminier and E. Sanchez-Palencia, Remarks and examples on transient processes and attractors in biological evolution, Elec. Jour. Diff. Equat. Conference, 22 (2015), 63-77.

[6]

C. Lobry, Modèles Déterministes en Dynamique des Populations, Ecole CIMPA Saint Louis du Sénégal, 2001.

[7]

K. S. McCann, The diversity - stability debate, Nature, 405 (2000), 228-230.

[8]

R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competetive exclusion, Jour Diff Equations, 23 (1977), 30-52. doi: 10.1016/0022-0396(77)90135-8.

[9]

J. Milnor, Topology from the Differential Viewpoint, The University Press of Virginia, Charlottesville, 1965.

[10] V. A. Pliss, Nonlocal Problems in the Theory of Oscillations, Academic Press, 1966.
[11]

A. RapaportD. Dochain and J. Harmand, Practical coexistence in the chemostat with arbitrarily close growth functions, Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, 9 (2008), 231-243.

[12]

E. Sanchez-Palencia and J.-P. Françoise, Structural stability and emergence of biodiversity, Acta Biotheoretica, 61 (2013), 397-412.

[13]

E. Sanchez-Palencia and J.-P. Françoise, Constrained evolution processes and emergence of organized diversity, Math Meth Applied Sci., 39 (2016), 104-133. doi: 10.1002/mma.3463.

[14]

S. J. Schreiber, Criteria for Cr robust permanence, Jour Diff Equations, 162 (2000), 400-426. doi: 10.1006/jdeq.1999.3719.

[15]

Hal. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, vol 111, Amer. Math. Soc., 2011.

Figure 1.  Plot of orbits on the coordinate planes and of the heteroclinic orbit of system (1)
Figure 2.  Plot of the attractor of system (1)
Figure 3.  Plot of a solution of system (1) on the attractor (i.e. longtime after the initial instant
Figure 10.  Artist view of of an orbit approaching a limit cycle turning around in the case when the period of the "turning around" is smaller than the period of the limit cycle
Figure 11.  Artist view of of an orbit approaching a limit cycle turning around in the case when the period of the "turning around" is larger than the period of the limit cycle
Figure 12.  The same orbit of Fig 11 after a diffeomorphism
Figure 4.  Plot of $z_{2}(t)$ of a solution of system (1) starting with small $z_{2}(0)$ showing a double periodicity (the small period is the attractor, whereas the long period one is the transient, which vanishes slowly)
Figure 5.  Plot of a solution of system (6) with the parameters (7)
Figure 6.  Plot of the solution of system (6) with the parameters (6) starting from the point $(1.5,1,0.7,1.5)$: four-dimensional cycle
Figure 7.  Plot of the solution of system (6) with the parameters (6) starting from the point $(1.5,0.6,0.6,0.8)$: there is a stable equilibrium with extinction of $x_2$ and $z_1$
Figure 8.  Plot of the limit cycle of system (10) (see text for the values of the parameters)
Figure 9.  Plot of the periodic solution of system (10) (see text for the values of the parameters) with the parameters)
[1]

J. M. Cushing, Simon Maccracken Stump. Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1017-1044. doi: 10.3934/mbe.2013.10.1017

[2]

MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777

[3]

Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73

[4]

Yuan Lou, Daniel Munther. Dynamics of a three species competition model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3099-3131. doi: 10.3934/dcds.2012.32.3099

[5]

Van Hieu Dang. An extension of hybrid method without extrapolation step to equilibrium problems. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1723-1741. doi: 10.3934/jimo.2017015

[6]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[7]

Sebastian J. Schreiber. On persistence and extinction for randomly perturbed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 457-463. doi: 10.3934/dcdsb.2007.7.457

[8]

Chiun-Chuan Chen, Li-Chang Hung, Chen-Chih Lai. An N-barrier maximum principle for autonomous systems of $n$ species and its application to problems arising from population dynamics. Communications on Pure & Applied Analysis, 2019, 18 (1) : 33-50. doi: 10.3934/cpaa.2019003

[9]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[10]

Enoch H. Apaza, Regis Soares. Axiom a systems without sinks and sources on $n$-manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 393-401. doi: 10.3934/dcds.2008.21.393

[11]

Mickael Chekroun, Michael Ghil, Jean Roux, Ferenc Varadi. Averaging of time - periodic systems without a small parameter. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 753-782. doi: 10.3934/dcds.2006.14.753

[12]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[13]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1677-1692. doi: 10.3934/dcds.2016.36.1677

[14]

Piotr Biler, Elio E. Espejo, Ignacio Guerra. Blowup in higher dimensional two species chemotactic systems. Communications on Pure & Applied Analysis, 2013, 12 (1) : 89-98. doi: 10.3934/cpaa.2013.12.89

[15]

Marc Briant. Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6669-6688. doi: 10.3934/dcds.2016090

[16]

Jianquan Li, Xiaoqin Wang, Xiaolin Lin. Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1425-1434. doi: 10.3934/mbe.2018065

[17]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[18]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[19]

Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259

[20]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (13)
  • HTML views (64)
  • Cited by (0)

[Back to Top]