• Previous Article
    Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media
  • DCDS-S Home
  • This Issue
  • Next Article
    Dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems
doi: 10.3934/dcdss.2019115

POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds

Laboratoire LaSIE, Université de La Rochelle, Avenue M. Crépeau, 17042 La Rochelle, France

* Corresponding author: Abdallah El Hamidi

Received  February 2018 Revised  April 2018 Published  November 2018

An adaptation of the Inverse Distance Weighting (IDW) method to the Grassmann manifold is carried out for interpolation of parametric POD bases. Our approach does not depend on the choice of a reference point on the Grassmann manifold to perform the interpolation, moreover our results are more accurate than those obtained in [7]. In return, our approach is not direct but iterative and its relevance depends on the choice of the weighting functions which are inversely proportional to the distance to the parameter. More judicious choices of such weighting functions can be carried out via kriging technics [23], this is the subject of a work in progress.

Citation: Rolando Mosquera, Aziz Hamdouni, Abdallah El Hamidi, Cyrille Allery. POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019115
References:
[1]

P. A. AbsilR. Mahony and R. Sepulchre, Riemannian geometry of Grassmann manifolds with a view on algorithmic computation, Acta Applicandae Mathematicae, 80 (2004), 199-220. doi: 10.1023/B:ACAP.0000013855.14971.91.

[2]

B. Afsari, Riemannian Lp center of mass: Existence, uniqueness, and convexity, Proc. Amer. Math. Soc., 139 (2011), 655-673. doi: 10.1090/S0002-9939-2010-10541-5.

[3]

N. AkkariA. HamdouniE. Liberge and M. Jazar, A mathematical and numerical study of the sensitivity of a reduced order model by POD (ROM-POD), for a 2D incompressible fluid flow, Journal of Computational and Applied Mathematics, 270 (2014), 522-530. doi: 10.1016/j.cam.2013.11.025.

[4]

N. AkkariA. Hamdouni and M. Jazar, Mathematical and numerical results on the sensitivity of the POD approximation relative to the Burgers equation, Applied Mathematics and Computation, 247 (2014), 951-961. doi: 10.1016/j.amc.2014.09.005.

[5]

N. AkkariA. HamdouniE. Liberge and M. Jazar, On the sensitivity of the POD technique for a parameterized quasi-nonlinear parabolic equation, Advanced Modeling and Simulation in Engineering Sciences, 2 (2014), 1-16.

[6] Y. Aminov, The Geometry of Submanifolds, Gordon and Breach Science Publishers, 2001.
[7]

D. Amsallem and C. Farhat, An interpolation method for adapting reduced order models and application to aeroelasticity, Amer. Inst. Aeronaut. Astronaut., 46 (2008), 1803-1813.

[8]

M. AzaïezF. Ben Belgacem and T. Chacón Rebollo, Error bounds for POD expansions of parameterized transient temperatures, Comput. Methods Appl. Mech. Engrg., 305 (2016), 501-511. doi: 10.1016/j.cma.2016.02.016.

[9]

M. Azaïez and F. Ben Belgacem, Karhunen-Loève's truncation error for bivariate functions, Comput. Methods Appl. Mech. Engrg., 290 (2015), 57-72. doi: 10.1016/j.cma.2015.02.019.

[10]

B. Denis de SennevilleA. El Hamidi and C. Moonen, A direct PCA-based approach for real-time description of physiological organ deformations, IEEE Transactions on Medical Imaging, 34 (2015), 974-982.

[11]

B. HaasdonkM. Ohlberger and G. Rozza, A reduced basis method for evolution schemes with parameter-dependent explicit operators, Electron. Trans. Numer. Anal., 32 (2008), 145-161.

[12]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach utilizing proper orthogonal decomposition, Math. Comput. Model., 38 (2003), 1003-1028. doi: 10.1016/S0895-7177(03)90102-6.

[13]

H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977), 509-541. doi: 10.1002/cpa.3160300502.

[14]

S. E. Kozlov, Geometry of real Grassmannian manifolds, Zap. Nauchn. Semin. POMI, 246 (1997), 108-129.

[15]

K. Kunisch and S. Volkwein, Control of Burgers equation by a reduced order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), 345-371. doi: 10.1023/A:1021732508059.

[16]

H. Le, Estimation of Riemannian barycenters, LMS J. Comput. Math., 7 (2004), 193-200. doi: 10.1112/S1461157000001091.

[17]

C. LeblondC. Allery and C. Inard, An optimal projection method for the reduce order modeling of incompressible flows, Comp. Meth, in Applied Mechanics and Engineering, 200 (2011), 2507-2527. doi: 10.1016/j.cma.2011.04.020.

[18]

E. LongatteE. LibergeM. PomarèdeJ. F. Sigrist and A. Hamdouni, Parametric study of flow-induced vibrations in cylinder arrays under single-phase fluid cross flows using POD-ROM, Journal of Fluids and Structures, 78 (2018), 314-330.

[19]

Y. LuN. Blal and A. Gravouil, Space time POD based computational vademecums for parametric studies: Application to thermo-mechanical problems, Advanced Modeling and Simulation in Engineering Sciences, 5 (2018), 1-27.

[20] W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. Math. Studies, Princeton University Press, 1974.
[21]

A. T. Patera and G. Rozza, A Posteriori Error Estimation for Parametrized Partial Differential Equations, MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2007.

[22] P. Petersen, Riemannian Geometry, Springer-Verlag, 2006.
[23]

D. PigoliA. Menafoglio and P. Secchi, Kriging prediction for manifold-valued random fields, Journal of Multivariate Analysis, 145 (2016), 117-131. doi: 10.1016/j.jmva.2015.12.006.

[24]

S. RoujolM. RiesB. QuessonC. Moonen and B. Denis de Senneville, Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs, Magnetic Resonance in Medicine, 63 (2010), 1080-7.

[25]

L. Sirovich, Turbulence and the dynamics of coherent structures, parts Ⅰ-Ⅲ, Quart. Appl. Math., 45 (1987), 561-571. doi: 10.1090/qam/910462.

[26]

A. TalletC. AlleryC. Leblond and E. Liberge, A minimum residual projection to build coupled velocity-pressure POD-ROM for incompressible Navier-Stokes equations, Comm. in Nonlin. Science and Num. Simulation, 22 (2015), 909-932. doi: 10.1016/j.cnsns.2014.09.009.

[27]

S. Volkwein, Optimal control of a phase-field model using the proper orthogonal decomposition, Z. Angew. Math. Mech., 81 (2001), 83-97. doi: 10.1002/1521-4001(200102)81:2<83::AID-ZAMM83>3.0.CO;2-R.

[28]

Y. C. Wong, Differential geometry of Grassmann manifolds, Proc Natl Acad Sci U S A., 57 (1967), 589-594. doi: 10.1073/pnas.57.3.589.

show all references

References:
[1]

P. A. AbsilR. Mahony and R. Sepulchre, Riemannian geometry of Grassmann manifolds with a view on algorithmic computation, Acta Applicandae Mathematicae, 80 (2004), 199-220. doi: 10.1023/B:ACAP.0000013855.14971.91.

[2]

B. Afsari, Riemannian Lp center of mass: Existence, uniqueness, and convexity, Proc. Amer. Math. Soc., 139 (2011), 655-673. doi: 10.1090/S0002-9939-2010-10541-5.

[3]

N. AkkariA. HamdouniE. Liberge and M. Jazar, A mathematical and numerical study of the sensitivity of a reduced order model by POD (ROM-POD), for a 2D incompressible fluid flow, Journal of Computational and Applied Mathematics, 270 (2014), 522-530. doi: 10.1016/j.cam.2013.11.025.

[4]

N. AkkariA. Hamdouni and M. Jazar, Mathematical and numerical results on the sensitivity of the POD approximation relative to the Burgers equation, Applied Mathematics and Computation, 247 (2014), 951-961. doi: 10.1016/j.amc.2014.09.005.

[5]

N. AkkariA. HamdouniE. Liberge and M. Jazar, On the sensitivity of the POD technique for a parameterized quasi-nonlinear parabolic equation, Advanced Modeling and Simulation in Engineering Sciences, 2 (2014), 1-16.

[6] Y. Aminov, The Geometry of Submanifolds, Gordon and Breach Science Publishers, 2001.
[7]

D. Amsallem and C. Farhat, An interpolation method for adapting reduced order models and application to aeroelasticity, Amer. Inst. Aeronaut. Astronaut., 46 (2008), 1803-1813.

[8]

M. AzaïezF. Ben Belgacem and T. Chacón Rebollo, Error bounds for POD expansions of parameterized transient temperatures, Comput. Methods Appl. Mech. Engrg., 305 (2016), 501-511. doi: 10.1016/j.cma.2016.02.016.

[9]

M. Azaïez and F. Ben Belgacem, Karhunen-Loève's truncation error for bivariate functions, Comput. Methods Appl. Mech. Engrg., 290 (2015), 57-72. doi: 10.1016/j.cma.2015.02.019.

[10]

B. Denis de SennevilleA. El Hamidi and C. Moonen, A direct PCA-based approach for real-time description of physiological organ deformations, IEEE Transactions on Medical Imaging, 34 (2015), 974-982.

[11]

B. HaasdonkM. Ohlberger and G. Rozza, A reduced basis method for evolution schemes with parameter-dependent explicit operators, Electron. Trans. Numer. Anal., 32 (2008), 145-161.

[12]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach utilizing proper orthogonal decomposition, Math. Comput. Model., 38 (2003), 1003-1028. doi: 10.1016/S0895-7177(03)90102-6.

[13]

H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977), 509-541. doi: 10.1002/cpa.3160300502.

[14]

S. E. Kozlov, Geometry of real Grassmannian manifolds, Zap. Nauchn. Semin. POMI, 246 (1997), 108-129.

[15]

K. Kunisch and S. Volkwein, Control of Burgers equation by a reduced order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), 345-371. doi: 10.1023/A:1021732508059.

[16]

H. Le, Estimation of Riemannian barycenters, LMS J. Comput. Math., 7 (2004), 193-200. doi: 10.1112/S1461157000001091.

[17]

C. LeblondC. Allery and C. Inard, An optimal projection method for the reduce order modeling of incompressible flows, Comp. Meth, in Applied Mechanics and Engineering, 200 (2011), 2507-2527. doi: 10.1016/j.cma.2011.04.020.

[18]

E. LongatteE. LibergeM. PomarèdeJ. F. Sigrist and A. Hamdouni, Parametric study of flow-induced vibrations in cylinder arrays under single-phase fluid cross flows using POD-ROM, Journal of Fluids and Structures, 78 (2018), 314-330.

[19]

Y. LuN. Blal and A. Gravouil, Space time POD based computational vademecums for parametric studies: Application to thermo-mechanical problems, Advanced Modeling and Simulation in Engineering Sciences, 5 (2018), 1-27.

[20] W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. Math. Studies, Princeton University Press, 1974.
[21]

A. T. Patera and G. Rozza, A Posteriori Error Estimation for Parametrized Partial Differential Equations, MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2007.

[22] P. Petersen, Riemannian Geometry, Springer-Verlag, 2006.
[23]

D. PigoliA. Menafoglio and P. Secchi, Kriging prediction for manifold-valued random fields, Journal of Multivariate Analysis, 145 (2016), 117-131. doi: 10.1016/j.jmva.2015.12.006.

[24]

S. RoujolM. RiesB. QuessonC. Moonen and B. Denis de Senneville, Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs, Magnetic Resonance in Medicine, 63 (2010), 1080-7.

[25]

L. Sirovich, Turbulence and the dynamics of coherent structures, parts Ⅰ-Ⅲ, Quart. Appl. Math., 45 (1987), 561-571. doi: 10.1090/qam/910462.

[26]

A. TalletC. AlleryC. Leblond and E. Liberge, A minimum residual projection to build coupled velocity-pressure POD-ROM for incompressible Navier-Stokes equations, Comm. in Nonlin. Science and Num. Simulation, 22 (2015), 909-932. doi: 10.1016/j.cnsns.2014.09.009.

[27]

S. Volkwein, Optimal control of a phase-field model using the proper orthogonal decomposition, Z. Angew. Math. Mech., 81 (2001), 83-97. doi: 10.1002/1521-4001(200102)81:2<83::AID-ZAMM83>3.0.CO;2-R.

[28]

Y. C. Wong, Differential geometry of Grassmann manifolds, Proc Natl Acad Sci U S A., 57 (1967), 589-594. doi: 10.1073/pnas.57.3.589.

Figure 1.  Geometrical properties of the flow around a circular cylinder
Figure 2.  Isovalue of the velocity magnitude for Re = 180 at the first snapshot
Figure 3.  Influence of the power $p$ of the IDW-G interpolation on the prediction of the drag and lift for Reynolds number $Re = 160$ and $Re = 190$
Figure 4.  Comparison of the drag and lift coefficients obtained by the two interpolations methods IDW-G and Grassmann and those obtained with the full model for Re = 140 and 160
Figure 5.  Comparison of the drag and lift coefficients obtained by the two interpolations methods IDW-G and Grassmann and those obtained with the full model for Re = 170 and 190
[1]

Abdallah El Hamidi, Aziz Hamdouni, Marwan Saleh. On eigenelements sensitivity for compact self-adjoint operators and applications. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 445-455. doi: 10.3934/dcdss.2016006

[2]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[3]

P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253

[4]

Mirela Kohr, Cornel Pintea, Wolfgang L. Wendland. Neumann-transmission problems for pseudodifferential Brinkman operators on Lipschitz domains in compact Riemannian manifolds. Communications on Pure & Applied Analysis, 2014, 13 (1) : 175-202. doi: 10.3934/cpaa.2014.13.175

[5]

Gengsheng Wang, Yashan Xu. Advantages for controls imposed in a proper subset. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2427-2439. doi: 10.3934/dcdsb.2013.18.2427

[6]

Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002

[7]

Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.

[8]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[9]

Golamreza Zamani Eskandani, Hamid Vaezi. Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1469-1477. doi: 10.3934/dcds.2011.31.1469

[10]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[11]

Kequan Zhao, Xinmin Yang. Characterizations of the $E$-Benson proper efficiency in vector optimization problems. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 643-653. doi: 10.3934/naco.2013.3.643

[12]

Marius Durea, Elena-Andreea Florea, Radu Strugariu. Henig proper efficiency in vector optimization with variable ordering structure. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-25. doi: 10.3934/jimo.2018071

[13]

Litismita Jena, Sabyasachi Pani. Index-range monotonicity and index-proper splittings of matrices. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 379-388. doi: 10.3934/naco.2013.3.379

[14]

Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems & Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035

[15]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[16]

Hui Ma, Dongxu Qi, Ruixia Song, Tianjun Wang. The complete orthogonal V-system and its applications. Communications on Pure & Applied Analysis, 2007, 6 (3) : 853-871. doi: 10.3934/cpaa.2007.6.853

[17]

Cuiling Fan, Koji Momihara. Unified combinatorial constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2014, 8 (1) : 53-66. doi: 10.3934/amc.2014.8.53

[18]

T. L. Alderson, K. E. Mellinger. Geometric constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2008, 2 (4) : 451-467. doi: 10.3934/amc.2008.2.451

[19]

Michel Duprez, Guillaume Olive. Compact perturbations of controlled systems. Mathematical Control & Related Fields, 2018, 8 (2) : 397-410. doi: 10.3934/mcrf.2018016

[20]

Andrew M. Zimmer. Compact asymptotically harmonic manifolds. Journal of Modern Dynamics, 2012, 6 (3) : 377-403. doi: 10.3934/jmd.2012.6.377

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]